Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microb Pathog ; 196: 107012, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39396685

RESUMEN

Nanotechnology has various applications in all branches of science, including engineering, medicine, pharmacy, and other related fields. Conventional techniques, such as the chemical reduction approach, which produces nanoparticles (NPs) using various hazardous chemicals, offer several health risks due to their toxicity and raise serious environmental concerns. In contrast, other techniques are expensive and need a lot of energy. More than 70 % of pathogenic bacterial strains have developed resistance to at least one class of antibiotics, leading to an increase in life-threatening bacterial infections that pose a significant health risk. However, the creation of NPs by biogenic synthesis is risk-free for the environment and clean enough for biological use. This study was aimed at synthesis of novel Moringa oleifera mediated starch capped silver-zinc NPs and green synthesis of ZnO nanoparticles from Aloe vera, papaya, and Lactobacillus plantarum. Antimicrobial activity of both NPs was tested against Gram-negative antibiotic-resistant bacteria Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus (ATCC 6538), and two foodborne pathogens Listeria monocytogenes and Campylobacter jejuni. Ultraviolet-visible spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy were used for characterization. Majority of the research studies stress the flexibility, repeatability, and desirable features of the metals, polymers, and plant components employed in the production of biomedical nanoparticles. Such an intuitive approach provides several advantages, particularly a reasonable total expense, compliance with healthcare and pharmaceutical implementations, and the ability to produce massive volumes for industrial use. The novelty of the presented work lies in the unusual combination of silver, starch, and zinc oxide nanoparticles using Moringa oleifera, which is an eco-friendly alternative to chemical-based methods. This research exhibits the formation of well-defined nanoparticles with strong antibacterial activity against a wide range of pathogens, giving us insights into their potential applications in various biomedical fields.


Asunto(s)
Antibacterianos , Tecnología Química Verde , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Probióticos , Plata , Almidón , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Almidón/química , Almidón/farmacología , Nanopartículas del Metal/química , Probióticos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Bacterias/efectos de los fármacos , Moringa oleifera/química , Carica/química , Nanopartículas/química , Aloe/química
2.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257283

RESUMEN

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Asunto(s)
Microbioma Gastrointestinal , Solanum tuberosum , Humanos , Animales , Ratones , Almidón Resistente , Dieta Alta en Grasa/efectos adversos , Glucemia , ARN Ribosómico 16S , Almidón/farmacología , Obesidad/etiología
3.
Fish Physiol Biochem ; 50(2): 635-651, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38165563

RESUMEN

Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-ß1 (tgf-ß1), interleukin-10 (il-10), and interleukin-11ß (il-11ß); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.


Asunto(s)
Lubina , Glucosa , Animales , Glucosa/metabolismo , Almidón/farmacología , Lubina/fisiología , Triticum/metabolismo , Metabolismo de los Lípidos , Dieta/veterinaria , Hígado/metabolismo , Carbohidratos de la Dieta/metabolismo , Lípidos , Fosfofructoquinasas/metabolismo , ARN Mensajero/metabolismo
4.
Allergy ; 78(5): 1218-1233, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36424672

RESUMEN

BACKGROUND: Dietary carbohydrates and fats are intrinsically correlated within the habitual diet. We aimed to disentangle the associations of starch and sucrose from those of fat, in relation to allergic sensitization, asthma and rhinoconjuctivitis prevalence in humans, and to investigate underlying mechanisms using murine models. METHODS: Epidemiological data from participants of two German birth cohorts (age 15) were used in logistic regression analyses testing cross-sectional associations of starch and sucrose (and their main dietary sources) with aeroallergen sensitization, asthma and rhinoconjunctivitis, adjusting for correlated fats (saturated, monounsaturated, omega-6 and omega-3 polyunsaturated) and other covariates. For mechanistic insights, murine models of aeroallergen-induced allergic airway inflammation (AAI) fed with a low-fat-high-sucrose or -high-starch versus a high-fat diet were used to characterize and quantify disease development. Metabolic and physiologic parameters were used to track outcomes of dietary interventions and cellular and molecular responses to monitor the development of AAI. Oxidative stress biomarkers were measured in murine sera or lung homogenates. RESULTS: We demonstrate a direct association of dietary sucrose with asthma prevalence in males, while starch was associated with higher asthma prevalence in females. In mice, high-carbohydrate feeding, despite scant metabolic effects, aggravated AAI compared to high-fat in both sexes, as displayed by humoral response, mucus hypersecretion, lung inflammatory cell infiltration and TH 2-TH 17 profiles. Compared to high-fat, high-carbohydrate intake was associated with increased pulmonary oxidative stress, signals of metabolic switch to glycolysis and decreased systemic anti-oxidative capacity. CONCLUSION: High consumption of digestible carbohydrates is associated with an increased prevalence of asthma in humans and aggravated lung allergic inflammation in mice, involving oxidative stress-related mechanisms.


Asunto(s)
Asma , Neumonía , Masculino , Femenino , Humanos , Ratones , Animales , Adolescente , Carbohidratos de la Dieta/farmacología , Prevalencia , Estudios Transversales , Asma/epidemiología , Asma/etiología , Pulmón , Inflamación , Almidón/farmacología , Sacarosa/farmacología
5.
Curr Opin Clin Nutr Metab Care ; 26(4): 334-340, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057658

RESUMEN

PURPOSE OF REVIEW: Resistant starch has received much attention recently as a healthy carbohydrate component of the diet. Resistant starch is not digested in the small intestine and can thus affect the gut microbiota of the host because of its fermentability. This review summarizes the interactions along the resistant starch-gut microbiota-host axis to help understand the health effects of resistant starch. RECENT FINDINGS: Recent studies indicate that resistant starch can be a helpful dietary component for special disease states like diabetes, metabolic syndrome, chronic kidney disease, constipation, and colitis. Its health effects are associated with modulation of the gut microbiota, and with gut microbes converting resistant starch into active and bioavailable metabolites that promote intestinal health. SUMMARY: The results from human clinical trials and studies in animal models indicate that supplementation of the diet with resistant starch in different metabolic diseases help remodel gut microbiota, especially increasing short-chain fatty acid (SCFA)-producing bacteria, and produce bioactive metabolites like SCFA, bile acids, and amino acids responsible for a variety of health effects. The gut microbiota and microbial metabolites probably mediate the effects of resistant starch on intestinal health.


Asunto(s)
Almidón Resistente , Almidón , Animales , Humanos , Almidón Resistente/farmacología , Almidón/química , Almidón/metabolismo , Almidón/farmacología , Dieta , Bacterias , Ácidos Grasos Volátiles/metabolismo , Suplementos Dietéticos
6.
Biomacromolecules ; 24(12): 5666-5677, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953507

RESUMEN

A polysaccharide gel containing covalently bound amikacin, a broad-spectrum antibiotic, was produced by using epichlorohydrin-activated hydroxyethyl starch (HES). The structure of the polymers was analyzed by 13C and 1H nuclear magnetic resonance (13C NMR and 1H NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of covalent attachment of amikacin to the epoxypropyl substituent and the HES backbone were determined. The antibacterial activity of the polymer was evaluated in vitro using the agar well diffusion method with the Staphylococcus aureus P209 strain. It was demonstrated that the polymer retained activity in the presence of bacterial amylase, which is released upon bacterial attack. The gel was applied for coating pores and surfaces of a biocomposite material based on a xenogenic bovine bone matrix. In vivo experiments showed the effectiveness of utilizing amikacin-containing biocomposite bone-substitute materials in the treatment of experimental osteomyelitis in rats using objective histological control and X-ray tomography.


Asunto(s)
Amicacina , Matriz Ósea , Ratas , Animales , Bovinos , Amicacina/farmacología , Staphylococcus aureus , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Almidón/farmacología , Polímeros/química
7.
J Surg Res ; 281: 1-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095893

RESUMEN

INTRODUCTION: Although the improving effect of nitric oxide (NO) donors has experimentally been demonstrated in shock, there are still no NO donor medications clinically available. Thiol-nitrosothiol-hydroxyethyl starch (S-NO-HES) is a novel molecule consisting of NO coupled to a thiolated derivative of hydroxyethyl starch (HES). It was aimed to assess the ability of S-NO-HES to serve as an NO donor under a variety of in vitro simulated physiologic conditions, which might be the first step to qualify this molecule as a novel type of NO donor-fluid. METHODS: We studied the effect of temperature on NO-releasing properties of S-NO-HES in blood, at 34°C, 37°C, and 41°C. Ascorbic acid (Asc) and amylase were also tested in a medium environment. In addition, we evaluated the activity of S-NO-HES in the isolated aortic ring and Langendorff-perfused heart setup. RESULTS: The NO release property of S-NO-HES was found at any temperature. Asc led to a significant increase in the production of NO compared to S-NO-HES incubation (P < 0.05). The addition of amylase together with Asc to the medium further increased the release of NO (P < 0.05). S-NO-HES exerted significant vasodilatory effects on phenylephrine precontracted aortic rings that were dose-dependent (P < 0.01). Furthermore, S-NO-HES significantly increased the heart rate and additionally reduced the duration of the cardiac action potential, as indicated by a reduction of QTc-B values (P < 0.01). CONCLUSIONS: We demonstrated for the first time that the S-NO-HES molecule exhibited its NO-releasing effects. The effectiveness of this new NO donor to substitute NO deficiency under septic conditions or in other indications needs to be studied.


Asunto(s)
Derivados de Hidroxietil Almidón , Hipotensión , Humanos , Derivados de Hidroxietil Almidón/farmacología , Derivados de Hidroxietil Almidón/uso terapéutico , Óxido Nítrico , Frecuencia Cardíaca , Amilasas , Almidón/farmacología , Sustitutos del Plasma
8.
Biotechnol Appl Biochem ; 70(3): 1320-1331, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36588392

RESUMEN

Streptococcus mutans is a main organism of tooth infections including tooth decay and periodontitis. The aim of this study was to assess the influence of sucrose and starch on biofilm formation and proteome profile of S. mutans ATCC 35668 strain. The biofilm formation was assessed by microtiter plating method. Changes in bacterial proteins after exposure to sucrose and starch carbohydrates were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The biofilm formation of S. mutans was increased to 391.76% in 1% sucrose concentration, 165.76% in 1% starch, and 264.27% in the 0.5% sucrose plus 0.5% starch in comparison to biofilm formation in the media without sugars. The abundance of glutamines, adenylate kinase, and 50S ribosomal protein L29 was increased under exposure to sucrose. Upregulation of lactate utilization protein C, 5-hydroxybenzimidazole synthase BzaA, and 50S ribosomal protein L16 was formed under starch exposure. Ribosome-recycling factor, peptide chain release factor 1, and peptide methionine sulfoxide reductase MsrB were upregulated under exposure to sucrose in combination with starch. The results demonstrated that the carbohydrates increase microbial pathogenicity. In addition, sucrose and starch carbohydrates can induce biofilm formation of S. mutans via various mechanisms such as changes in the expression of special proteins.


Asunto(s)
Almidón , Sacarosa , Almidón/farmacología , Almidón/metabolismo , Sacarosa/farmacología , Sacarosa/metabolismo , Streptococcus mutans , Proteoma/metabolismo , Biopelículas
9.
J Dairy Sci ; 105(3): 2288-2300, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35086703

RESUMEN

The objective of this study was to investigate the effects of supplementation of an exogenous enzyme preparation (EEP) on performance, total-tract digestibility of nutrients, plasma AA profile, and milk fatty acids composition in lactating dairy cows fed a reduced-starch diet compared with a normal-starch diet (i.e., positive control). Forty-eight Holstein cows (28 primiparous and 20 multiparous) were enrolled in a 10-wk randomized complete block design experiment with 16 cows per treatment. Treatments were as follows: (1) normal-starch diet (control) containing (% dry matter basis) 24.8% starch and 33.0% neutral detergent fiber (NDF), (2) reduced-starch diet (RSD) containing 18.4% starch and 39.1% NDF, or (3) RSD supplemented with 10 g/cow per day of an EEP (ENZ). The EEP contained amylolytic and fibrolytic activities and was top-dressed on the total mixed ration at the time of feeding. Compared with normal-starch diet, dry matter intake and milk and energy-corrected milk (ECM) yields were lower (on average by 7.1, 9.5, and 7.2%, respectively) for cows on the RSD treatments. Concentrations, but not yields, of milk fat and total solids were increased by RSD. Energy-corrected milk feed efficiency did not differ among treatments. Total-tract digestibility of NDF tended to increase by RSD treatments. Plasma AA concentrations were not affected by treatment, except that of 3-methylhistidine was increased by ENZ, compared with RSD. Blood glucose concentration tended to be lower in cows on the RSD treatments, but ENZ increased glucose and tended to increase insulin concentrations at 4 h after feeding when compared with RSD. Cows on the RSD treatments had decreased concentrations of de novo fatty acids and tended to have increased concentrations of preformed fatty acids in milk. Overall, decreasing dietary starch concentration by 26% decreased dry matter intake, milk, and ECM yields, but ECM feed efficiency was not different among treatments. The negative effects of reducing dietary starch on production were not attenuated by the EEP.


Asunto(s)
Lactancia , Almidón , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Femenino , Leche , Rumen , Almidón/farmacología
10.
Surg Innov ; 29(3): 367-377, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34551638

RESUMEN

BACKGROUND: A novel absorbable porous starch hemostat (APSH) based on calcium ion-exchange crosslinked porous starch microparticles (Ca2+CPSM) was developed to improve hemostasis during surgeries for irregular cuts. The aim of this study was to compare its hemostatic efficacy and biocompatibility in a standard rat liver injury model relatively to Arista AH, Quickclean, and crosslinked porous starch microparticles (CPSM, without calcium ion). METHODS: 72 Wistar rats (220g-240 g) were randomly assigned to six groups (Arista, Quickclean, CPSM, Ca2+CPSM, native potato starch, and untreated control group, n =12 per group). 30 mg of each hemostatic agent was applied to a standard circular liver excision (8 mm in diameter and 3 mm deep) in rats. Following their hemostatic efficacy, in vivo biocompatiblity evaluation was examined. The native potato starch (NPS) group was used as the negative group. RESULTS: Ca2+CPSM had almost the same hemostatic efficacy compared with Arista; meanwhile, all the 4 hemostatic agents had good blood compatibility. In terms of in vivo tissue compatibility, Ca2+CPSM had relatively fast degradation and absorption rate with good histocompatibility. As the morphological, anatomic observation and H&E staining of liver defects after implantation, Ca2+CPSM was almost completely absorbed by liver tissue after 14 days. CONCLUSION: According to our study, Ca2+CPSM could effectively achieve hemostasis in the standard rat liver injury model and exhibited good blood compatibility and in vivo tissue compatibility. These finding suggested that Ca2+CPSM as a new kind of APSH had its extensive clinical application value.


Asunto(s)
Hemostáticos , Animales , Calcio/farmacología , Hemostasis , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Porosidad , Ratas , Ratas Wistar , Almidón/farmacología , Almidón/uso terapéutico
11.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682591

RESUMEN

High-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Amilosa/farmacología , Animales , Ácidos y Sales Biliares/farmacología , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Almidón/farmacología , Zea mays
12.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615339

RESUMEN

The synthesis of structured MgO is reported using feedstock starch (route I), citrus pectin (route II), and Aloe vera (route III) leaf, which are suitable for use as green fuels due to their abundance, low cost, and non-toxicity. The oxides formed showed high porosity and were evaluated as antimicrobial agents. The samples were characterized by energy-dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The crystalline periclase monophase of the MgO was identified for all samples. The SEM analyses show that the sample morphology depends on the organic fuel used during the synthesis. The antibacterial activity of the MgO-St (starch), MgO-CP (citrus pectin), and MgO-Av (Aloe vera) oxides was evaluated against pathogens Staphylococcus aureus (ATCC 6538P) and Escherichia coli (ATCC 8739). Antifungal activity was also studied against Candida albicans (ATCC 64548). The studies were carried out using the qualitative agar disk diffusion method and quantitative minimum inhibitory concentration (MIC) tests. The MIC of each sample showed the same inhibitory concentration of 400 µg. mL-1 for the studied microorganisms. The formation of inhibition zones and the MIC values in the antimicrobial analysis indicate the effective antimicrobial activity of the samples against the test microorganisms.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Magnesio/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Microscopía Electrónica de Rastreo , Escherichia coli , Pruebas de Sensibilidad Microbiana , Almidón/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Difracción de Rayos X
13.
Molecules ; 27(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36500634

RESUMEN

To improve the mechanical and antibacterial properties of traditional starch-based film, herein, cellulose nanocrystals (CNCs) and chitosan nanoparticles (CS NPs) were introduced to potato starch (PS, film-forming matrix) for the preparation of nanocomposite film without incorporation of additional antibacterial agents. CNCs with varied concentrations were added to PS and CS NPs composite system to evaluate the optimal film performance. The results showed that tensile strength (TS) of nanocomposite film with 0, 0.01, 0.05, and 0.1% (w/w) CNCs incorporation were 41, 46, 47 and 41 MPa, respectively. The elongation at break (EAB) reached 12.5, 10.2, 7.1 and 13.3%, respectively. Due to the reinforcing effect of CNCs, surface morphology and structural properties of nanocomposite film were altered. TGA analysis confirmed the existence of hydrogen bondings and electrostatic attractions between components in the film-forming matrix. The prepared nanocomposite films showed good antibacterial properties against both E. coli and S. aureus. The nanocomposite film, consist of three most abundant biodegradable polymers, could potentially serve as antibacterial packaging films with strong mechanical properties for food and allied industries.


Asunto(s)
Quitosano , Nanocompuestos , Nanopartículas , Celulosa/química , Quitosano/farmacología , Quitosano/química , Staphylococcus aureus , Almidón/farmacología , Escherichia coli , Nanopartículas/química , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de Alimentos
14.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296704

RESUMEN

In recent years, the prevalence of diabetes is on the rise, globally. Resistant starch (RS) has been known as a kind of promising dietary fiber for the prevention or treatment of diabetes. Therefore, it has become a hot topic to explore the hypoglycemic mechanisms of RS. In this review, the mechanisms have been summarized, according to the relevant studies in the recent 15 years. In general, the blood glucose could be regulated by RS by regulating the intestinal microbiota disorder, resisting digestion, reducing inflammation, regulating the hypoglycemic related enzymes and some other mechanisms. Although the exact mechanisms of the beneficial effects of RS have not been fully verified, it is indicated that RS can be used as a daily dietary intervention to reduce the risk of diabetes in different ways. In addition, further research on hypoglycemic mechanisms of RS impacted by the RS categories, the different experimental animals and various dietary habits of human subjects, have also been discussed in this review.


Asunto(s)
Diabetes Mellitus , Hipoglucemiantes , Animales , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Almidón Resistente , Glucemia , Almidón/farmacología , Fibras de la Dieta/uso terapéutico , Fibras de la Dieta/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/prevención & control
15.
J Sci Food Agric ; 102(2): 794-800, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34223648

RESUMEN

BACKGROUND: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively. RESULTS: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days. The F6/SB coating reduced weight loss and gas exchange compared to uncoated fruit after 2 and 4 weeks of storage at 12 °C plus a shelf life of 1 week at 20 °C, without adversely affecting the lemon physicochemical quality. CONCLUSION: Overall, the F6/SB coating formulation, composed of pregelatinized potato starch, glyceryl monostearate, glycerol, emulsifiers and SB, with a total solid content of 5.5%, showed the best results in reducing citrus sour rot and maintaining the postharvest quality of cold-stored 'Fino' lemons. Therefore, it showed potential as a new cost-effective postharvest treatment suitable to be included in integrated disease management programs for citrus international markets with zero tolerance to chemical residues. © 2021 Society of Chemical Industry.


Asunto(s)
Citrus/microbiología , Conservación de Alimentos/métodos , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Geotrichum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Almidón/química , Almidón/farmacología , Citrus/química , Composición de Medicamentos , Almacenamiento de Alimentos , Frutas/química , Frutas/microbiología , Geotrichum/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Benzoato de Sodio/química , Solanum tuberosum/química
16.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 888-898, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35049105

RESUMEN

This study evaluated the effects of starch sources on pellet-processing characteristics as well as the growth performance and caecal microflora of rabbits. Ninety-six 35-day-old rabbits were randomly allocated to four groups with 24 rabbits per group and were fed diets with different starch sources (corn, wheat, potato or pea starch). The trial lasted for 40 days. The greatest hardness and lowest powder ratio of feed pellets was associated with the use of potato starch (p > 0.05). Pellet bulk density was the highest with corn starch, and the density was greater than that of pea starch by 5.91% (p < 0.05). The pulverisation ratio of corn starch pellets was the lowest, 43.67% lower than that of the pea starch pellets (p < 0.05). The average daily gain of rabbits in the corn starch group was higher than in the potato and pea starch groups, by 7.89% and 10.81%, respectively (p < 0.05). Rabbits in the corn starch group had the best feed conversion ratio (p > 0.05). The feed intake of rabbits in the potato starch group was higher than in the wheat and pea starch groups, by 4.30% and 5.16% respectively (p < 0.05). The dominant caecal bacteria phyla were Firmicutes, Bacteroidetes, Verrucomicrobia and Proteobacteria. There were 12 bacterial genera with proportions greater than 0.1%. The caecal proportion of Clostridium in the pea starch group was 1.8%, which was higher than those of the other groups (p = 0.057). There was no significant difference in caecal microbial diversity among groups (p > 0.05). The highest microbial clustering effect was found in the corn starch treatment. In conclusion, the best pellet quality was found using potato starch; for rabbit growth, the optimal source was corn starch.


Asunto(s)
Microbioma Gastrointestinal , Solanum tuberosum , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Carbohidratos de la Dieta , Digestión , Carne , Conejos , Almidón/farmacología , Triticum
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(1): 28-33, 2022 Jan 30.
Artículo en Zh | MEDLINE | ID: mdl-35150103

RESUMEN

An absorbable hemostatic material based on polysaccharide was prepared. The concentration of blood cells and coagulation factors was increased by reducing the water content in the blood, so as to reduce the coagulation time and achieve the purpose of rapid hemostasis. The specific surface area of starch was increased by using hydrochloric acid to hydrolyze potato starch, which made it easier to combine with α-amylase and increased the degradation rate. Starch was crosslinked into microspheres by crosslinking agent, which made the particle size uniform and greatly improved the water absorption. The surface modification of crosslinked starch microspheres with carboxymethyl group can further improve the water absorption of hemostatic materials. The results showed that the water absorption rate of our hemostatic material was more than 800%, and the average hemostatic time in the animal model was 138.7s. Compared with the imported products on the market, our hemostatic material have better hemostatic performance.


Asunto(s)
Hemostáticos , Animales , Hemostasis , Hemostáticos/farmacología , Polisacáridos/farmacología , Almidón/farmacología , Agua/farmacología
18.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R195-R202, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175589

RESUMEN

Dietary flexibility in digestive enzyme activity is widespread in vertebrates but mechanisms are poorly understood. When laboratory rats are switched to a higher carbohydrate diet, the activities of the apical intestinal α-glucosidases (AGs) increase within 6-12 h, mainly by rapid increase in enzyme transcription, followed by rapid translation and translocation to the intestine's apical, brush-border membrane (BBM). We performed the first unified study of the overall process in birds, relying on activity, proteomic, and transcriptomic data from the same animals. Our avian model was nestling house sparrows (Passer domesticus), which switch naturally from a low-starch insect diet to a higher starch seed diet and in whom the protein sucrase-isomaltase (SI) is responsible for all maltase and sucrase intestinal activities. Twenty-four hours after the switch to a high-starch diet, SI activity was increased but not at 12 h post diet switch. SI was the only hydrolase increased in the BBM, and its relative abundance and activity were positively correlated. Twenty-four hours after a reverse switch back to the lower starch diet, SI activity was decreased but not at 12 h post diet switch. Parallel changes in SI mRNA relative abundance were associated with the changes in SI activity in both diet-switch experiments, but our data also revealed an apparent diurnal rhythm in SI mRNA. This is the first demonstration that birds may rely on rapid increase in abundance of SI and its mRNA when adjusting to high-starch diet. Although the mechanisms underlying dietary induction of intestinal enzymes seem similar in nestling house sparrows and laboratory rodents, the time course for modulation in nestlings seemed half as fast compared with laboratory rodents. Before undertaking modulation, an opportunistic forager facing limited resources might rely on more extensive or prolonged environmental sampling, because the redesign of the intestine's hydrolytic capacity shortly after just one or a few meals of a new substrate might be a costly mistake.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Carbohidratos de la Dieta/farmacología , ARN Mensajero/metabolismo , Gorriones/fisiología , Almidón/farmacología , Complejo Sacarasa-Isomaltasa/metabolismo , Envejecimiento , Alimentación Animal , Animales , Dieta/veterinaria , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , ARN Mensajero/genética , Almidón/administración & dosificación , Complejo Sacarasa-Isomaltasa/genética
19.
BMC Microbiol ; 21(1): 232, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425755

RESUMEN

BACKGROUND: In unfavourable environment, such as nutrient limitation, some bacteria encased themselves into a three dimensional polymer matrix called biofilm. The majority of microbial infections in human are biofilm related, including chronic lung, wound, and ear infections. The matrix of biofilm which consists of extracellular polymeric substances (EPS) causes bacterial colonization on medical implanted device in patients, such as catheter and lead to patient's death. Biofilm infections are harder to treat due to increasing antibiotic resistance compared to planktonic microbial cells and escalating the antibiotic concentration may result into in vivo toxicity for the patients. Special compounds which are non-microbicidal that could inhibit or destroy biofilm formation are called antibiofilm compounds, for example enzymes, anti-quorum sensing, and anti-adhesins. Arthrobacter sp. CW01 produced antibiofilm compound known as amylase. This time our preliminary study proved that the antibiofilm compound was not only amylase, but also protease. Therefore, this research aimed to optimize the production of antibiofilm agents using amylase and protease inducing media. The five types of production media used in this research were brain heart infusion (BHI) (Oxoid), BHI with starch (BHIS), casein with starch (CS), yeast extract with starch (YS), and casein-yeast extract with starch (CYS). Biofilm eradication and inhibition activities were assayed against Pseudomonas aeruginosa (ATCC 27,853) and Staphylococcus aureus (ATCC 25,923). RESULTS: The results showed that different production media influenced the antibiofilm activity. Addition of starch, casein and yeast extract increased the production of amylase and protease significantly. Higher amylase activity would gradually increase the antibiofilm activity until it reached the certain optimum point. It was shown that crude extracts which contained amylase only (BHI, BHIS and YS) had the optimum eradication activity against P. aeruginosa and S. aureus biofilm around 60-70 %. Meanwhile, CS and CYS crude extracts which contained both amylase and protease increased the biofilm eradication activity against both pathogens, which were around 70-90 %. CONCLUSIONS: It was concluded that the combination of amylase and protease was more effective as antibiofilm agents against P. aeruginosa and S. aureus rather than amylase only.


Asunto(s)
Amilasas/biosíntesis , Antibacterianos/farmacología , Arthrobacter/efectos de los fármacos , Biopelículas/efectos de los fármacos , Caseínas/farmacología , Péptido Hidrolasas/biosíntesis , Almidón/farmacología , Levaduras/química , Antibacterianos/biosíntesis , Arthrobacter/enzimología , Arthrobacter/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
20.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202905

RESUMEN

Cereals are subject to contamination by pathogenic fungi, which damage grains and threaten public health with their mycotoxins. Fusarium graminearum and its mycotoxins, trichothecenes B (TCTBs), are especially targeted in this study. Recently, the increased public and political awareness concerning environmental issues tends to limit the use of traditional fungicides against these pathogens in favor of eco-friendlier alternatives. This study focuses on the development of biofungicides based on the encapsulation of a curcumin derivative, tetrahydrocurcumin (THC), in polysaccharide matrices. Starch octenylsuccinate (OSA-starch) and chitosan have been chosen since they are generally recognized as safe. THC has been successfully trapped into particles obtained through a spray-drying or freeze-drying processes. The particles present different properties, as revealed by visual observations and scanning electron microscopy. They are also different in terms of the amount and the release of encapsulated THC. Although freeze-dried OSA-starch has better trapped THC, it seems less able to protect the phenolic compound than spray-dried particles. Chitosan particles, both spray-dried and lyophilized, have shown promising antifungal properties. The IC50 of THC-loaded spray-dried chitosan particles is as low as 0.6 ± 0.3 g/L. These particles have also significantly decreased the accumulation of TCTBs by 39%.


Asunto(s)
Antifúngicos , Agentes de Control Biológico , Quitosano , Fusarium/crecimiento & desarrollo , Almidón/análogos & derivados , Antifúngicos/química , Antifúngicos/farmacología , Agentes de Control Biológico/química , Agentes de Control Biológico/farmacología , Quitosano/química , Quitosano/farmacología , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacología , Almidón/química , Almidón/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA