Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2317928121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236738

RESUMEN

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Quitridiomicetos/genética , Anuros , Anfibios/microbiología , Micosis/microbiología , Transformación Genética
2.
Annu Rev Microbiol ; 75: 673-693, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351790

RESUMEN

Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios/microbiología , Animales , Micosis/microbiología , Micosis/veterinaria , Virulencia
3.
Proc Natl Acad Sci U S A ; 120(2): e2212633120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595674

RESUMEN

The origins and evolution of virulence in amphibian-infecting chytrids Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are largely unknown. Here, we use deep nanopore sequencing of Bsal and comparative genomics against 21 high-quality genome assemblies that span the fungal Chytridiomycota. We discover that Bsal has the most repeat-rich genome of the Chytridiomycota, comprising 40.9% repetitive elements; this genome has expanded to more than 3× the length of its conspecific Bd, with autonomous and fully functional LTR/Gypsy elements contributing significantly to the expansion. The M36 metalloprotease virulence factors are highly expanded (n = 177) in Bsal, most of which (53%) are flanked by transposable elements, suggesting they have a repeat-associated expansion. We find enrichment upstream of M36 metalloprotease genes of three novel repeat families belonging to the repeat superfamily of LINEs that are implicated with gene copy number variations. Additionally, Bsal has a highly compartmentalized genome architecture, with virulence factors enriched in gene-sparse/repeat-rich compartments, while core conserved genes are enriched in gene-rich/repeat-poor compartments. Genes upregulated during infection are primarily found in the gene-sparse/repeat-rich compartment in both Bd and Bsal. Furthermore, genes with signatures of positive selection in Bd are enriched in repeat-rich regions, suggesting these regions are a cradle for the evolution of chytrid pathogenicity. These are the hallmarks of two-speed genome evolution, and this study provides evidence of two-speed genomes in an animal pathogen, shedding light on the evolution of fungal pathogens of vertebrates driving global declines and extinctions.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Virulencia/genética , Micosis/veterinaria , Micosis/microbiología , Variaciones en el Número de Copia de ADN , Anfibios/microbiología , Quitridiomicetos/genética , Factores de Virulencia , Evolución Molecular
4.
Ecol Lett ; 27(1): e14372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288868

RESUMEN

The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogen Batrachochytrium dendrobatidis (Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die-off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd-inhibitory bacteria following the drought, which points to a one-month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host-microbiome interactions and alter wildlife disease dynamics.


Asunto(s)
Quitridiomicetos , Microbiota , Micosis , Animales , Sequías , Micosis/veterinaria , Anfibios/microbiología , Bacterias , Animales Salvajes , Piel/microbiología
5.
Ecol Lett ; 27(5): e14431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712705

RESUMEN

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Asunto(s)
Batrachochytrium , Interacciones Huésped-Patógeno , Animales , Batrachochytrium/genética , Batrachochytrium/fisiología , Anuros/microbiología , Anfibios/microbiología , Micosis/veterinaria , Micosis/microbiología , Adaptación Fisiológica , Filogenia
6.
Proc Biol Sci ; 291(2021): 20232658, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628130

RESUMEN

North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.


Asunto(s)
Quitridiomicetos , Ecosistema , Animales , ARN Ribosómico 16S , Quitridiomicetos/fisiología , Anfibios/microbiología , Urodelos , Suelo , América del Norte
7.
Fungal Genet Biol ; 170: 103858, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101696

RESUMEN

The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.


Asunto(s)
Quitridiomicetos , Animales , Filogenia , Quitridiomicetos/genética , Anfibios/genética , Anfibios/microbiología , Evolución Biológica , ADN
8.
Oecologia ; 205(3-4): 437-443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143251

RESUMEN

Batrachochytrium dendrobatidis (Bd) is a pathogenic chytrid fungus that is particularly lethal for amphibians. Bd can extirpate amphibian populations within a few weeks and remain in water in the absence of amphibian hosts. Most efforts to determine Bd presence and quantity in the field have focused on sampling hosts, but these data do not give us a direct reflection of the amount of Bd in the water, which are useful for parameterizing disease models, and are not effective when hosts are absent or difficult to sample. Current methods for screening Bd presence and quantity in water are time, resource, and money intensive. Here, we developed a streamlined method for detecting Bd in water with low turbidity (e.g., water samples from laboratory experiments and relatively clear pond water from a natural lentic system). We centrifuged water samples with known amounts of Bd to form a pellet and extracted the DNA from that pellet. This method was highly effective and the resulting concentrations across all tested treatments presented a highly linear relationship with the expected values. While the experimentally derived values were lower than the inoculation doses, the values were highly correlated and a conversion factor allows us to extrapolate the actual Bd concentration. This centrifuge-based method is effective, repeatable, and would greatly expand the domain of tractable questions to be explored in the field of Bd ecology. Importantly, this method increases equity in the field, because it is time- and cost-efficient and requires few resources.


Asunto(s)
Batrachochytrium , Centrifugación , Animales , Microbiología del Agua , ADN de Hongos , Quitridiomicetos , Anfibios/microbiología
9.
Environ Res ; 261: 119752, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117053

RESUMEN

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 µg/L and 250 µg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 µg/L and 1.19 µg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.


Asunto(s)
Batrachochytrium , Animales , Batrachochytrium/efectos de los fármacos , Cobre/toxicidad , Zinc/toxicidad , Zinc/farmacología , Anfibios/microbiología , Micosis/veterinaria , Micosis/microbiología , Contaminantes Ambientales/toxicidad
10.
Bull Math Biol ; 86(8): 102, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976154

RESUMEN

This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.


Asunto(s)
Anfibios , Número Básico de Reproducción , Epidemias , Interacciones Huésped-Patógeno , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Animales , Número Básico de Reproducción/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Anfibios/microbiología , Anfibios/crecimiento & desarrollo , Dinámica Poblacional/estadística & datos numéricos , Estrellas de Mar/crecimiento & desarrollo , Estrellas de Mar/microbiología , Estadios del Ciclo de Vida , Quitridiomicetos/fisiología , Quitridiomicetos/patogenicidad , Modelos Epidemiológicos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA