RESUMEN
AIMS/HYPOTHESIS: The reason for the observed lower rate of islet autoantibody positivity in clinician-diagnosed adult-onset vs childhood-onset type 1 diabetes is not known. We aimed to explore this by assessing the genetic risk of type 1 diabetes in autoantibody-negative and -positive children and adults. METHODS: We analysed GAD autoantibodies, insulinoma-2 antigen autoantibodies and zinc transporter-8 autoantibodies (ZnT8A) and measured type 1 diabetes genetic risk by genotyping 30 type 1 diabetes-associated variants at diagnosis in 1814 individuals with clinician-diagnosed type 1 diabetes (1112 adult-onset, 702 childhood-onset). We compared the overall type 1 diabetes genetic risk score (T1DGRS) and non-HLA and HLA (DR3-DQ2, DR4-DQ8 and DR15-DQ6) components with autoantibody status in those with adult-onset and childhood-onset diabetes. We also measured the T1DGRS in 1924 individuals with type 2 diabetes from the Wellcome Trust Case Control Consortium to represent non-autoimmune diabetes control participants. RESULTS: The T1DGRS was similar in autoantibody-negative and autoantibody-positive clinician-diagnosed childhood-onset type 1 diabetes (mean [SD] 0.274 [0.034] vs 0.277 [0.026], p=0.4). In contrast, the T1DGRS in autoantibody-negative adult-onset type 1 diabetes was lower than that in autoantibody-positive adult-onset type 1 diabetes (mean [SD] 0.243 [0.036] vs 0.271 [0.026], p<0.0001) but higher than that in type 2 diabetes (mean [SD] 0.229 [0.034], p<0.0001). Autoantibody-negative adults were more likely to have the more protective HLA DR15-DQ6 genotype (15% vs 3%, p<0.0001), were less likely to have the high-risk HLA DR3-DQ2/DR4-DQ8 genotype (6% vs 19%, p<0.0001) and had a lower non-HLA T1DGRS (p<0.0001) than autoantibody-positive adults. In contrast to children, autoantibody-negative adults were more likely to be male (75% vs 59%), had a higher BMI (27 vs 24 kg/m2) and were less likely to have other autoimmune conditions (2% vs 10%) than autoantibody-positive adults (all p<0.0001). In both adults and children, type 1 diabetes genetic risk was unaffected by the number of autoantibodies (p>0.3). These findings, along with the identification of seven misclassified adults with monogenic diabetes among autoantibody-negative adults and the results of a sensitivity analysis with and without measurement of ZnT8A, suggest that the intermediate type 1 diabetes genetic risk in autoantibody-negative adults is more likely to be explained by the inclusion of misclassified non-autoimmune diabetes (estimated to represent 67% of all antibody-negative adults, 95% CI 61%, 73%) than by the presence of unmeasured autoantibodies or by a discrete form of diabetes. When these estimated individuals with non-autoimmune diabetes were adjusted for, the prevalence of autoantibody positivity in adult-onset type 1 diabetes was similar to that in children (93% vs 91%, p=0.4). CONCLUSIONS/INTERPRETATION: The inclusion of non-autoimmune diabetes is the most likely explanation for the observed lower rate of autoantibody positivity in clinician-diagnosed adult-onset type 1 diabetes. Our data support the utility of islet autoantibody measurement in clinician-suspected adult-onset type 1 diabetes in routine clinical practice.
Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Niño , Adulto , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 1/genética , Autoanticuerpos , Factores de Riesgo , Genotipo , Antígeno HLA-DR3/genéticaRESUMEN
BACKGROUND: Idiopathic inflammatory myopathies (IIM) are a group of autoimmune diseases characterised by myositis-related autoantibodies plus infiltration of leucocytes into muscles and/or the skin, leading to the destruction of blood vessels and muscle fibres, chronic weakness and fatigue. While complement-mediated destruction of capillary endothelia is implicated in paediatric and adult dermatomyositis, the complex diversity of complement C4 in IIM pathology was unknown. METHODS: We elucidated the gene copy number (GCN) variations of total C4, C4A and C4B, long and short genes in 1644 Caucasian patients with IIM, plus 3526 matched healthy controls using real-time PCR or Southern blot analyses. Plasma complement levels were determined by single radial immunodiffusion. RESULTS: The large study populations helped establish the distribution patterns of various C4 GCN groups. Low GCNs of C4T (C4T=2+3) and C4A deficiency (C4A=0+1) were strongly correlated with increased risk of IIM with OR equalled to 2.58 (2.28-2.91), p=5.0×10-53 for C4T, and 2.82 (2.48-3.21), p=7.0×10-57 for C4A deficiency. Contingency and regression analyses showed that among patients with C4A deficiency, the presence of HLA-DR3 became insignificant as a risk factor in IIM except for inclusion body myositis (IBM), by which 98.2% had HLA-DR3 with an OR of 11.02 (1.44-84.4). Intragroup analyses of patients with IIM for C4 protein levels and IIM-related autoantibodies showed that those with anti-Jo-1 or with anti-PM/Scl had significantly lower C4 plasma concentrations than those without these autoantibodies. CONCLUSIONS: C4A deficiency is relevant in dermatomyositis, HLA-DRB1*03 is important in IBM and both C4A deficiency and HLA-DRB1*03 contribute interactively to risk of polymyositis.
Asunto(s)
Dermatomiositis , Miositis , Adulto , Humanos , Niño , Complemento C4 , Variaciones en el Número de Copia de ADN , Cadenas HLA-DRB1/genética , Autoanticuerpos/genética , Antígeno HLA-DR3/genética , Predisposición Genética a la Enfermedad , Factores de Riesgo , Complemento C4a/genéticaRESUMEN
BACKGROUND AND AIMS: Genetic predisposition to autoimmune hepatitis (AIH) in adults is associated with possession of human leukocyte antigen (HLA) class I (A*01, B*08) and class II (DRB1*03, -04, -07, or -13) alleles, depending on geographic region. Juvenile autoimmune liver disease (AILD) comprises AIH-1, AIH-2, and autoimmune sclerosing cholangitis (ASC), which are phenotypically different from their adult counterparts. We aimed to define the relationship between HLA profile and disease course, severity, and outcome in juvenile AILD. APPROACH AND RESULTS: We studied 236 children of European ancestry (152 female [64%], median age 11.15 years, range 0.8-17), including 100 with AIH-1, 59 with AIH-2, and 77 with ASC. The follow-up period was from 1977 to June 2019 (median 14.5 years). Class I and II HLA genotyping was performed using PCR/sequence-specific primers. HLA B*08, -DRB1*03, and the A1-B8-DR3 haplotype impart predisposition to all three forms of AILD. Homozygosity for DRB1*03 represented the strongest risk factor (8.8). HLA DRB1*04, which independently confers susceptibility to AIH in adults, was infrequent in AIH-1 and ASC, suggesting protection; and DRB1*15 (DR15) was protective against all forms of AILD. Distinct HLA class II alleles predispose to the different subgroups of juvenile AILD: DRB1*03 to AIH-1, DRB1*13 to ASC, and DRB1*07 to AIH-2. Possession of homozygous DRB1*03 or of DRB1*13 is associated with fibrosis at disease onset, and possession of these two genes in addition to DRB1*07 is associated with a more severe disease in all three subgroups. CONCLUSIONS: Unique HLA profiles are seen in each subgroup of juvenile AILD. HLA genotype might be useful in predicting responsiveness to immunosuppressive treatment and course.
Asunto(s)
Colangitis Esclerosante/genética , Hepatitis Autoinmune/genética , Población Blanca/genética , Adolescente , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Antígeno HLA-A1/genética , Antígeno HLA-B8/genética , Antígeno HLA-DR3/genética , Cadenas HLA-DRB1/genética , Humanos , Lactante , Masculino , Índice de Severidad de la EnfermedadRESUMEN
AIMS/HYPOTHESIS: Oxylipins are lipid mediators derived from polyunsaturated fatty acids. Some oxylipins are proinflammatory (e.g. those derived from arachidonic acid [ARA]), others are pro-resolving of inflammation (e.g. those derived from α-linolenic acid [ALA], docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) and others may be both (e.g. those derived from linoleic acid [LA]). The goal of this study was to examine whether oxylipins are associated with incident type 1 diabetes. METHODS: We conducted a nested case-control analysis in the Diabetes Autoimmunity Study in the Young (DAISY), a prospective cohort study of children at risk of type 1 diabetes. Plasma levels of 14 ARA-derived oxylipins, ten LA-derived oxylipins, six ALA-derived oxylipins, four DHA-derived oxylipins and two EPA-related oxylipins were measured by ultra-HPLC-MS/MS at multiple timepoints related to autoantibody seroconversion in 72 type 1 diabetes cases and 71 control participants, which were frequency matched on age at autoantibody seroconversion (of the case), ethnicity and sample availability. Linear mixed models were used to obtain an age-adjusted mean of each oxylipin prior to type 1 diabetes. Age-adjusted mean oxylipins were tested for association with type 1 diabetes using logistic regression, adjusting for the high risk HLA genotype HLA-DR3/4,DQB1*0302. We also performed principal component analysis of the oxylipins and tested principal components (PCs) for association with type 1 diabetes. Finally, to investigate potential critical timepoints, we examined the association of oxylipins measured before and after autoantibody seroconversion (of the cases) using PCs of the oxylipins at those visits. RESULTS: The ARA-related oxylipin 5-HETE was associated with increased type 1 diabetes risk. Five LA-related oxylipins, two ALA-related oxylipins and one DHA-related oxylipin were associated with decreased type 1 diabetes risk. A profile of elevated LA- and ALA-related oxylipins (PC1) was associated with decreased type 1 diabetes risk (OR 0.61; 95% CI 0.40, 0.94). A profile of elevated ARA-related oxylipins (PC2) was associated with increased diabetes risk (OR 1.53; 95% CI 1.03, 2.29). A critical timepoint analysis showed type 1 diabetes was associated with a high ARA-related oxylipin profile at post-autoantibody-seroconversion but not pre-seroconversion. CONCLUSIONS/INTERPRETATION: The protective association of higher LA- and ALA-related oxylipins demonstrates the importance of both inflammation promotion and resolution in type 1 diabetes. Proinflammatory ARA-related oxylipins may play an important role once the autoimmune process has begun.
Asunto(s)
Autoinmunidad/inmunología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inmunología , Oxilipinas/sangre , Adolescente , Ácido Araquidónico/sangre , Autoanticuerpos/sangre , Estudios de Casos y Controles , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Ácidos Docosahexaenoicos/sangre , Femenino , Estudios de Seguimiento , Glutamato Descarboxilasa/inmunología , Antígeno HLA-DR3/genética , Antígeno HLA-DR4/genética , Humanos , Insulina/sangre , Insulina/inmunología , Ácido Linoleico/sangre , Masculino , Estudios Prospectivos , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/inmunología , Espectrometría de Masas en TándemRESUMEN
OBJECTIVES: We aimed to establish if in celiac disease (CD) with immunoglobulin A deficiency (IgAD) duodenal histopathology is influenced by human leukocyte antigen (HLA)-DQB1∗02 alleles dosage. Clinical differences between patients with CD and patients with CD and IgAD (CD-IgAD) were also evaluated. METHODS: Five hundred and sixteen CD and 16 patients with CD-IgAD, enrolled over the time of 8âyears, took part in this study. The severity of duodenal histopathology and frequency of CD at-risk HLA class II genes were compared in patients with CD versus patients with CD-IgAD. HLA class II genotypes were subdivided into two categories of genetic risk: high: HLA-DR3/DR7, -DR3/DR3, -DR4/DR4â-DR3/DR4 and low: HLA-DR5/DR7, -DR3/X, -DR4/X and X/X, where X means neither -DR3 nor -DR4. Then, they were compared with two types of duodenal histopathology: 0, 1, 2 and 3a of mild villous atrophy (MVA) and 3b and 3c of severe villous atrophy (SVA) according to the Marsh-Oberhuber classification. Clinical data concerning gender, number of esophagogastroduodenoscopies (EGDs) and association with other autoimmune diseases were obtained from medical records. RESULTS: In comparison with CD, CD-IgAD showed an increased frequency of MVA (Pâ<â0.0001). Furthermore, CD-IgAD with MVA showed an increase of HLA low-risk genotypes (Pâ=â0.036) and half HLA-DQ2 heterodimers (Pâ=â0.0443). Interestingly, CD-IgAD demanded an increased number of EGDs to reach the diagnosis of CD (Pâ=â0.0104) and autoimmune liver diseases were more frequent compared to CD (Pâ=â0.0049). CONCLUSIONS: CD-IgAD is associated with MVA, low-risk HLA class II genes, an increased number of EGDs and autoimmune liver diseases.
Asunto(s)
Enfermedad Celíaca , Atrofia , Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/genética , Antígenos HLA , Antígeno HLA-DR3/genética , Haplotipos , Humanos , Inmunoglobulina ARESUMEN
AIMS/HYPOTHESIS: The aim of this study was to determine if retention of C-peptide following immunotherapy using recombinant GAD65 conjugated to aluminium hydroxide (GAD-alum) is influenced by HLA risk haplotypes DR3-DQ2 and DR4-DQ8. METHODS: HLA-dependent treatment effect of GAD-alum therapy on C-peptide retention in individuals with recent-onset type 1 diabetes was evaluated using individual-level patient data from three placebo-controlled, randomised clinical trials using a mixed repeated measures model. RESULTS: A significant and dose-dependent effect was observed in individuals positive for the genotypes that include HLA-DR3-DQ2 but not HLA-DR4-DQ8 and in the broader subgroup of individuals positive for all genotypes that include HLA-DR3-DQ2 (i.e. including those also positive for HLA-DR4-DQ8). Higher doses (three or four injections) showed a treatment effect ratio of 1.596 (95% CI 1.132, 2.249; adjusted p = 0.0035) and 1.441 (95% CI 1.188, 1.749; adjusted p = 0.0007) vs placebo for the two respective HLA subgroups. CONCLUSIONS/INTERPRETATION: GAD65-specific immunotherapy has a significant effect on C-peptide retention in individuals with recent-onset type 1 diabetes who have the DR3-DQ2 haplotype. Graphical abstract.
Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Hidróxido de Aluminio/uso terapéutico , Péptido C/metabolismo , Desensibilización Inmunológica/métodos , Diabetes Mellitus Tipo 1/terapia , Glutamato Descarboxilasa/uso terapéutico , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Antígeno HLA-DR4/genética , Haplotipos , Humanos , Inmunoterapia/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del TratamientoRESUMEN
We have previously identified a signature HLA-DR3 pocket variant, designated HLA-DRß1-Arg74 that confers a high risk for Graves' Disease (GD). In view of the key role of HLA-DRß1-Arg74 in triggering GD we hypothesized that thyroid-stimulating hormone receptor (TSHR) peptides that bind to the HLA-DRß1-Arg74 pocket with high affinity represent key pathogenic TSHR peptides triggering GD, and that blocking their presentation to CD4+ T-cells can be used as a novel therapeutic approach in GD. There were several previous attempts to identify the major pathogenic TSHR peptide utilizing different methodologies, however the results were inconsistent and inconclusive. Therefore, the aim of our study was to use TSHR peptide binding affinity to HLA-DRß1-Arg74 as a method to identify the key pathogenic TSHR peptides that trigger GD. Using virtual screening and ELISA and cellular binding assays we identified 2 TSHR peptides that bound with high affinity to HLA-DRß1-Arg74 - TSHR.132 and TSHR.197. Peptide immunization studies in humanized DR3 mice showed that only TSHR.132, but not TSHR.197, induced autoreactive T-cell proliferation and cytokine responses. Next, we induced experimental autoimmune Graves' disease (EAGD) in a novel BALB/c-DR3 humanized mouse model we created and confirmed TSHR.132 as a major DRß1-Arg74 binding peptide triggering GD in our mouse model. Furthermore, we demonstrated that Cepharanthine, a compound we have previously identified as DRß1-Arg74 blocker, could block the presentation and T-cell responses to TSHR.132 in the EAGD model.
Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Bencilisoquinolinas/farmacología , Antígeno HLA-DR3/inmunología , Péptidos/antagonistas & inhibidores , Péptidos/inmunología , Receptores de Tirotropina/inmunología , Secuencia de Aminoácidos , Animales , Bencilisoquinolinas/química , Mapeo Epitopo/métodos , Epítopos de Linfocito T/inmunología , Citometría de Flujo , Enfermedad de Graves/diagnóstico , Enfermedad de Graves/tratamiento farmacológico , Enfermedad de Graves/inmunología , Antígeno HLA-DR3/genética , Humanos , Inmunohistoquímica , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Moleculares , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/inmunología , Péptidos/química , Unión Proteica , Receptores de Tirotropina/química , Relación Estructura-Actividad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
OBJECTIVE: Mechanisms underlying the role of non-human leukocyte antigen (HLA) genetic risk variants in type 1 diabetes (T1D) are poorly understood. We aimed to test the association between methylation and non-HLA genetic risk. METHODS: We conducted a methylation quantitative trait loci (mQTL) analysis in a nested case-control study from the Dietary Autoimmunity Study in the Young. Controls (n = 83) were frequency-matched to T1D cases (n = 83) based on age, race/ethnicity, and sample availability. We evaluated 13 non-HLA genetic markers known be associated with T1D. Genome-wide methylation profiling was performed on peripheral blood samples collected prior to T1D using the Illumina 450 K (discovery set) and infinium methylation EPIC beadchip (EPIC validation) platforms. Linear regression models, adjusting for age and sex, were used to test to each single nucleotide polymorphism (SNP) -probe combination. Logistic regression models were used to test the association between T1D and methylation levels among probes with a significant mQTL. A meta-analysis was used to combine odds ratios from the two platforms. RESULTS: We identified 10 SNP-methylation probe pairs (false discovery rate (FDR) adjusted P < .05 and validation P < .05). Probes were associated with the GSDMB, C1QTNF6, IL27, and INS genes. The cg03366382 (OR: 1.9, meta-P = .0495), cg21574853 (OR: 2.5, meta-P = .0232), and cg25336198 (odds ratio: 6.6, meta-P = .0081) probes were significantly associated with T1D. The three probes were located upstream from the INS transcription start site. CONCLUSIONS: We confirmed an association between DNA methylation and rs689 that has been identified in related studies. Measurements in our study preceded the onset of T1D suggesting methylation may have a role in the relationship between INS variation and T1D development.
Asunto(s)
Metilación de ADN/fisiología , Diabetes Mellitus Tipo 1/genética , Insulina/genética , Autoinmunidad/genética , Estudios de Casos y Controles , Niño , Preescolar , Colágeno/genética , Diabetes Mellitus Tipo 1/epidemiología , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Antígeno HLA-DR3/genética , Antígeno HLA-DR4/genética , Humanos , Interleucinas/genética , Masculino , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genéticaRESUMEN
AIMS/HYPOTHESIS: The molecular basis for the pathological impact of specific HLA molecules on autoimmune diseases such as type 1 diabetes remains unclear. Recent natural history studies in children have indicated a link between specific HLA genotypes and the first antigenic target against which immune responses develop. We set out to examine this link in vivo by exploring the diabetogenicity of islet antigens on the background of a common diabetes-associated HLA haplotype. METHODS: We generated a novel HLA-transgenic mouse model that expresses high-risk genes for type 1 diabetes (DRB1*03:01-DQA1*05:01-DQB1*02:01) as well as human CD80 under the rat insulin promoter and human CD4, on a C57BL/6 background. Adjuvanted antigen priming was used to reveal the diabetogenicity of candidate antigens and peptides. RESULTS: HLA-DR3-DQ2+huCD4+IA/IE-/-RIP.B7.1+ mice spontaneously developed autoimmune diabetes (incidence 46% by 35 weeks of age), accompanied by numerous hallmarks of human type 1 diabetes (autoantibodies against GAD65 and proinsulin; pancreatic islet infiltration by CD4+, CD8+ B220+, CD11b+ and CD11c+ immune cells). Disease was markedly accelerated and had deeper penetrance after adjuvanted antigen priming with proinsulin (mean onset 11 weeks and incidence 100% by 20 weeks post challenge). Moreover, the diabetogenic effect of proinsulin located to the 15-residue B29-C11 region. CONCLUSIONS/INTERPRETATION: Our study identifies a proinsulin-derived peptide region that is highly diabetogenic on the HLA-DR3-DQ2 background using an in vivo model. This approach and the peptide region identified may have wider implications for future studies of human type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/genética , Proinsulina/administración & dosificación , Animales , Modelos Animales de Enfermedad , Haplotipos , Ratones , Ratones TransgénicosRESUMEN
Mature peripheral double negative T (DNT) cells expressing αß TCR but lacking CD4/CD8 coreceptors play protective as well as pathogenic roles. To better understand their development and functioning in vivo, we concomitantly inactivated CD4 and CD8 genes in mice with intact MHC class I and class II molecules with the hypothesis that this would enable the development of DNT cells. We also envisaged that these DNT cells could be activated by bacterial superantigens in vivo as activation of T cells by superantigens does not require CD4 and CD8 coreceptors. Because HLA class II molecules present superantigens more efficiently than murine MHC class II molecules, CD4 CD8 double knockout (DKO) mice transgenically expressing HLA-DR3 or HLA-DQ8 molecules were generated. Although thymic cellularity was comparable between wild type (WT) and DKO mice, CD3+ αß TCR+ thymocytes were significantly reduced in DKO mice, implying defects in thymic-positive selection. Splenic CD3+ αß TCR+ cells and Foxp3+ T regulatory cells were present in DKO mice but significantly reduced. However, the in vivo inflammatory responses and immunopathology elicited by acute challenge with the staphylococcal superantigen enterotoxin B were comparable between WT and DKO mice. Choric exposure to staphylococcal enterotoxin B precipitated a lupus-like inflammatory disease with characteristic lympho-monocytic infiltration in lungs, livers, and kidneys, along with production of anti-nuclear Abs in DKO mice as in WT mice. Overall, our results suggest that DNT cells can develop efficiently in vivo and chronic exposure to bacterial superantigens may precipitate a lupus-like autoimmune disease through activation of DNT cells.
Asunto(s)
Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD8/genética , Antígenos CD8/inmunología , Enterotoxinas/inmunología , Superantígenos/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Antígeno HLA-DR3/genética , Antígeno HLA-DR3/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Bazo/citología , Bazo/inmunología , Timo/citología , Timo/inmunologíaRESUMEN
Individuals with type 1 diabetes (T1D) are at increased risk of coeliac disease (CD), autoimmune thyroiditis and autoimmune gastritis, but the absolute risks are unclear. The aim of this study was to investigate the prevalence of autoantibodies to tissue transglutaminase (TGA), thyroid peroxidase (TPOA) and gastric H+ /K+ -ATPase (ATPA) and their genetic associations in a well-characterized population-based cohort of individuals with T1D from the Bart's-Oxford family study for whom islet autoantibody prevalence data were already available. Autoantibodies in sera from 1072 patients (males/females 604/468; median age 11·8 years, median T1D duration 2·7 months) were measured by radioimmunoassays; HLA class II risk genotype was analysed in 973 (91%) using polymerase chain reaction with sequence specific primers (PCR-SSP). The prevalence of TGA (and/or history of CD), TPOA and ATPA in patients was 9·0, 9·6 and 8·2%, respectively; 3·1% had two or more autoantibodies. Females were at higher risk of multiple autoimmunity; TGA/CD were associated with younger age and TPOA with older age. ATPA were uncommon in patients under 5 years, and more common in older patients. Anti-glutamate decarboxylase autoantibodies were predictive of co-existing TPOA/ATPA. TGA/CD were associated with human leucocyte antigen (HLA) DR3-DQ2, with the DR3-DQ2/DR3-DQ2 genotype conferring the highest risk, followed by DR4-DQ8/DR4-DQ8. ATPA were associated with DR3-DQ2, DRB1*0404 (in males) and the DR3-DQ2/DR4-DQ8 genotype. TPOA were associated with the DR3-DQ2/DR3-DQ2 genotype. Almost one-quarter of patients diagnosed with T1D aged under 21 years have at least one other organ-specific autoantibody. HLA class II genetic profiling may be useful in identifying those at risk of multiple autoimmunity.
Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Proteínas de Unión al GTP/inmunología , Glutamato Descarboxilasa/inmunología , ATPasa Intercambiadora de Hidrógeno-Potásio/inmunología , Yoduro Peroxidasa/inmunología , Proteínas de Unión a Hierro/inmunología , Transglutaminasas/inmunología , Adolescente , Adulto , Enfermedad Celíaca/genética , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad/genética , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/genética , Humanos , Lactante , Masculino , Proteína Glutamina Gamma Glutamiltransferasa 2 , Radioinmunoensayo , Gastropatías/genética , Enfermedades de la Tiroides/genética , Reino Unido , Adulto JovenRESUMEN
OBJECTIVES: We set out to determine the prevalence of tissue transglutaminase antibodies (anti-tTG) and celiac disease (CD) in children with newly diagnosed type 1 diabetes (T1D) and their first-degree relatives (FDR). The hypothesis was that the individuals with both diabetes and CD form a distinct subgroup in terms of human leukocyte antigen (HLA) class II genetics, islet autoantibodies, and clinical characteristics at diabetes diagnosis. SUBJECTS AND METHODS: This population-based observational study included 745 index children with T1D and their 2692 FDR from the Finnish Pediatric Diabetes Register. CD was ascertained by registers, patient records, and screening anti-tTG positive individuals for further testing. RESULTS: Among the index children, 4.8% had anti-tTG at diabetes diagnosis, and at the end of the study 3.2% had CD. Among the relatives, 2.9% had anti-tTG (4.8% mothers, 2.4% fathers, and 2.1% siblings), and 2.5% had CD (4.6% mothers, 2.1% fathers, and 1.4% siblings). Anti-tTG and CD associated with the HLA DR3-DQ2 haplotype. The usual female predominance of CD patients was observed in relatives (70%) but not among index children (46%). The index children with both diseases had a lower number of detectable islet autoantibodies than those with diabetes alone. CONCLUSIONS: The children with double diagnosis differed from those with diabetes alone in HLA genetics, humoral islet autoimmunity directed against fewer antigens, and in the lack of usual female preponderance among CD patients. Compared with 61% of the anti-tTG positive relatives, only 36% of anti-tTG positive index children developed CD implicating transient anti-tTG positivity at diagnosis of T1D.
Asunto(s)
Autoanticuerpos/análisis , Autoinmunidad , Enfermedad Celíaca/inmunología , Diabetes Mellitus Tipo 1/inmunología , Salud de la Familia , Proteínas de Unión al GTP/antagonistas & inhibidores , Transglutaminasas/antagonistas & inhibidores , Biomarcadores/sangre , Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/genética , Niño , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Femenino , Finlandia/epidemiología , Proteínas de Unión al GTP/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/química , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/química , Antígeno HLA-DR3/genética , Haplotipos , Humanos , Masculino , Registros Médicos , Prevalencia , Proteína Glutamina Gamma Glutamiltransferasa 2 , Sistema de Registros , Factores Sexuales , Transglutaminasas/metabolismoRESUMEN
OBJECTIVE: The aim of the study is to identify additional celiac disease associated loci in the major histocompatibility complex (MHC) independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. METHODS: We performed a high-resolution single-nucleotide polymorphism (SNP) genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. RESULTS: MHC genotyping revealed 2 associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci. Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. CONCLUSIONS: We have successfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HCG14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.
Asunto(s)
Enfermedad Celíaca/genética , Predisposición Genética a la Enfermedad , Antígeno HLA-DR3/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , ARN Largo no Codificante/genética , Estudios de Casos y Controles , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Niño , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido SimpleRESUMEN
AIMS/HYPOTHESIS: We sought to assess the frequency, determinants and prognosis for future diabetes in individuals with islet autoimmunity and whether these factors differ depending on the age of onset of islet autoimmunity. METHODS: A prospective cohort (n = 2547) of children from the general population who had a high-risk HLA genotype and children who had a first-degree relative with type 1 diabetes were followed for up to 21 years. Those with the persistent presence of one or more islet autoantibodies were categorised as early-onset (<8 years of age, n = 143, median 3.3 years) or late-onset (≥8 years of age, n = 64, median 11.1 years), and were followed for a median of 7.4 and 4.7 years, respectively. Progression to diabetes was evaluated by Kaplan-Meier analysis with logrank test. Factors associated with progression to diabetes were analysed using the parametric accelerated failure time model. RESULTS: Children with late-onset islet autoimmunity were more likely to be Hispanic or African-American than non-Hispanic white (p = 0.004), and less likely to be siblings of individuals with type 1 diabetes (p = 0.04). The frequencies of the HLA-DR3/4 genotype and non-HLA gene variants associated with type 1 diabetes did not differ between the two groups. However, age and HLA-DR3/4 were important predictors of rate of progression to both the presence of additional autoantibodies and type 1 diabetes. Late-onset islet autoimmunity was more likely to present with a single islet autoantibody (p = 0.01) and revert to an antibody-negative state (p = 0.01). Progression to diabetes was significantly slower in children with late-onset islet autoimmunity (p < 0.001). CONCLUSIONS/INTERPRETATION: A late onset of islet autoimmunity is more common in African-American and Hispanic individuals. About half of those with late-onset islet autoimmunity progress to show multiple islet autoantibodies and develop diabetes in adolescence or early adulthood. Further investigation of environmental determinants of late-onset autoimmunity may lead to an understanding of and ability to prevent adolescent and adult-onset type 1 diabetes.
Asunto(s)
Autoinmunidad/fisiología , Islotes Pancreáticos/inmunología , Adolescente , Edad de Inicio , Autoanticuerpos/inmunología , Autoanticuerpos/fisiología , Autoinmunidad/genética , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Femenino , Genotipo , Antígeno HLA-DR3/genética , Antígeno HLA-DR4/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Estudios ProspectivosRESUMEN
BACKGROUND: The presence of HLA haplotype DR3-DQ2 or DR4-DQ8 is associated with an increased risk of celiac disease. In addition, nearly all children with celiac disease have serum antibodies against tissue transglutaminase (tTG). METHODS: We studied 6403 children with HLA haplotype DR3-DQ2 or DR4-DQ8 prospectively from birth in the United States, Finland, Germany, and Sweden. The primary end point was the development of celiac disease autoimmunity, which was defined as the presence of tTG antibodies on two consecutive tests at least 3 months apart. The secondary end point was the development of celiac disease, which was defined for the purpose of this study as either a diagnosis on biopsy or persistently high levels of tTG antibodies. RESULTS: The median follow-up was 60 months (interquartile range, 46 to 77). Celiac disease autoimmunity developed in 786 children (12%). Of the 350 children who underwent biopsy, 291 had confirmed celiac disease; an additional 21 children who did not undergo biopsy had persistently high levels of tTG antibodies. The risks of celiac disease autoimmunity and celiac disease by the age of 5 years were 11% and 3%, respectively, among children with a single DR3-DQ2 haplotype, and 26% and 11%, respectively, among those with two copies (DR3-DQ2 homozygosity). In the adjusted model, the hazard ratios for celiac disease autoimmunity were 2.09 (95% confidence interval [CI], 1.70 to 2.56) among heterozygotes and 5.70 (95% CI, 4.66 to 6.97) among homozygotes, as compared with children who had the lowest-risk genotypes (DR4-DQ8 heterozygotes or homozygotes). Residence in Sweden was also independently associated with an increased risk of celiac disease autoimmunity (hazard ratio, 1.90; 95% CI, 1.61 to 2.25). CONCLUSIONS: Children with the HLA haplotype DR3-DQ2, especially homozygotes, were found to be at high risk for celiac disease autoimmunity and celiac disease early in childhood. The higher risk in Sweden than in other countries highlights the importance of studying environmental factors associated with celiac disease. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others.).
Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedad Celíaca/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/genética , Anticuerpos/sangre , Enfermedades Autoinmunes/epidemiología , Enfermedad Celíaca/epidemiología , Preescolar , Europa (Continente)/epidemiología , Femenino , Antígeno HLA-DR4/genética , Homocigoto , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Estudios Prospectivos , Riesgo , Transglutaminasas/inmunología , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: Minnesota is home to the largest Somali population in USA, and pediatric diabetes teams are seeing increasing numbers of Somali children with diabetes. OBJECTIVE: To assess the immune basis of diabetes in Somali children in the Twin Cities, Minnesota. METHODS: A total of 31 Somali children ≤19 yr were treated for type 1 diabetes (T1D) at the University of Minnesota Masonic Children's Hospital and Children's Hospitals and Clinics of Minnesota underwent analysis of human leukocyte antigen (HLA) alleles (n = 30) and diabetes autoantibodies [glutamic acid decarboxylase (GAD65), islet antigen 2 (IA-2), zinc transporter 8 (ZnT8); n = 31]. HLA alleles were analyzed in 49 Somalis without diabetes (controls). Anti-transglutaminase autoantibodies (TGA) for celiac disease were also measured. RESULTS: In Somali children with T1D aged 13.5 ± 5 yr (35% female, disease duration 6.5 ± 3.6 yr), the most common HLA allele was DRB1*03:01 (93%, compared with 45% of Somali controls), followed by DRB1*13:02 (27%). There was a relatively low frequency of DR4 (13%). Controls showed a similar pattern. All 31 participants were positive for at least one diabetes autoantibody. Insulin antibodies were positive in 84% (all were on insulin). Excluding insulin antibodies, 23 (74%) subjects tested positive for at least one other diabetes autoantibody; 32% had 1 autoantibody, 32% had 2 autoantibodies, and 10% had 3 autoantibodies. GAD65 autoantibodies were found in 56% of subjects, IA-2 in 29%, and ZnT8 in 26%. Four (13%) were TGA positive. CONCLUSION: The autoantibody and HLA profiles of Somali children with diabetes are consistent with autoimmune diabetes. Their HLA profile is unique with an exceptionally high prevalence of DRB1*03:01 allele and relative paucity of DR4 alleles compared with African Americans with T1D.
Asunto(s)
Diabetes Mellitus Tipo 1/etnología , Diabetes Mellitus Tipo 1/genética , Antígeno HLA-DR3/genética , Adolescente , Estudios de Casos y Controles , Niño , Ciudades/epidemiología , Diabetes Mellitus Tipo 1/inmunología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Antígeno HLA-DR4/genética , Humanos , Masculino , Minnesota/epidemiología , Somalia/etnología , Adulto JovenRESUMEN
MHC, especially HLA-DR3 and HLA-DR2, is one of the most important genetic susceptibility regions for systemic lupus erythematosus. Human studies to understand the role of specific HLA alleles in disease pathogenesis have been hampered by the presence of strong linkage disequilibrium in this region. To overcome this, we produced transgenic mice expressing HLA-DR3 (DRß1*0301) and devoid of endogenous class II (both I-A and I-E genes, AE(0)) on a lupus-prone NZM2328 background (NZM2328.DR3(+)AE(0)). Both NZM2328 and NZM2328.DR3(+)AE(0) mice developed anti-dsDNA and glomerulonephritis, but anti-dsDNA titers were higher in the latter. Although kidney histological scores were similar in NZM2328 and NZM2328.DR3(+)AE(0) mice (7.2 ± 4.3 and 8.6 ± 5.7, respectively, p = 0.48), the onset of severe proteinuria occurred earlier in NZM2328.DR3(+)AE(0) mice compared with NZM2328 mice (median, 5 and 9 mo respectively, p < 0.001). Periarterial lymphoid aggregates, classic wire loop lesions, and occasional crescents were seen only in kidneys from NZM2328.DR3(+)AE(0) mice. Interestingly, NZM2328.DR3(+)AE(0) mice, but not NZM2328 mice, spontaneously developed anti-Smith (Sm) Abs. The anti-Sm Abs were seen in NZM2328.DR3(+)AE(0) mice that were completely devoid of endogenous class II (AE(-/) (-)) but not in mice homozygous (AE(+/+)) or heterozygous (AE(+/-)) for endogenous MHC class II. It appears that only HLA-DR3 molecules can preferentially select SmD-reactive CD4(+) T cells for generation of the spontaneous anti-Sm immune response. Thus, our mouse model unravels a critical role for HLA-DR3 in generating an autoimmune response to SmD and lupus nephritis in the NZM2328 background.
Asunto(s)
Anticuerpos Antinucleares/inmunología , Glomerulonefritis/inmunología , Antígeno HLA-DR3/inmunología , Nefritis Lúpica/inmunología , Proteínas Nucleares snRNP/inmunología , Animales , Anticuerpos Antinucleares/genética , Linfocitos T CD4-Positivos/inmunología , ADN/inmunología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Glomerulonefritis/genética , Antígeno HLA-DR2/inmunología , Antígeno HLA-DR3/genética , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Nefritis Lúpica/genética , Ratones , Ratones NoqueadosRESUMEN
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/metabolismo , Autoantígenos/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Antígenos CD40/inmunología , Diabetes Mellitus Tipo 1/genética , Genes RAG-1/genética , Antígenos HLA-DQ/genética , Antígeno HLA-DR3/genética , Antígeno HLA-DR4/genética , Humanos , Polimorfismo Genético , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Linfocitos T/patologíaRESUMEN
Life-threatening infections caused by Staphylococcus aureus, particularly the community-acquired methicillin-resistant strains of S. aureus, continue to pose serious problems. Greater virulence and increased pathogenicity of certain S. aureus strains are attributed to higher prevalence of exotoxins. Of these exotoxins, the superantigens (SAg) are likely most pathogenic because of their ability to rapidly and robustly activate the T cells even in extremely small quantities. Therefore, countering SAg-mediated T cell activation using T regulatory cells (Tregs) might be beneficial in diseases such as toxic shock syndrome (TSS). As the normal numbers of endogenous Tregs in a typical host are insufficient, we hypothesized that increasing the Treg numbers by administration of IL-2/anti-IL-2 Ab immune complexes (IL2C) or by adoptive transfer of ex vivo expanded Tregs might be more effective in countering SAg-mediated immune activation. HLA-DR3 transgenic mice that closely recapitulate human TSS were treated with IL2C to increase endogenous Tregs or received ex vivo expanded Tregs. Subsequently, they were challenged with SAg to induce TSS. Analyses of various parameters reflective of TSS (serum cytokine/chemokine levels, multiple organ pathology, and SAg-induced peripheral T cell expansion) indicated that increasing the Tregs failed to mitigate TSS. On the contrary, serum IFN-γ levels were increased in IL2C-treated mice. Exploration into the reasons behind the lack of protective effect of Tregs revealed IL-17 and IFN-γ-dependent loss of Tregs during TSS. In addition, significant upregulation of glucocorticoid-induced TNFR family-related receptor on conventional T cells during TSS could render them resistant to Treg-mediated suppression, contributing to failure of Treg-mediated immune regulation.
Asunto(s)
Enterotoxinas/inmunología , Choque Séptico/inmunología , Superantígenos/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Traslado Adoptivo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Complejo Antígeno-Anticuerpo/inmunología , Complejo Antígeno-Anticuerpo/farmacología , Proteína Relacionada con TNFR Inducida por Glucocorticoide/biosíntesis , Glucocorticoides , Cadenas alfa de HLA-DR/genética , Cadenas alfa de HLA-DR/inmunología , Cadenas beta de HLA-DR/genética , Cadenas beta de HLA-DR/inmunología , Antígeno HLA-DR3/genética , Antígeno HLA-DR3/inmunología , Interferón gamma/sangre , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Interleucina-2/farmacología , Activación de Linfocitos/inmunología , Staphylococcus aureus Resistente a Meticilina/inmunología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Ratones Transgénicos , Receptores del Factor de Necrosis Tumoral/biosíntesis , Choque Séptico/microbiología , Infecciones Estafilocócicas/inmunología , Regulación hacia ArribaRESUMEN
OBJECTIVES: Tissue transglutaminase autoantibodies (tTGAs) represent the first evidence of celiac disease (CD) development. Associations of HLA-DR3-DQA1*05:01-DQB1*02:01 (i.e., DR3-DQ2) and, to a lesser extent, DR4-DQA1*03:01-DQB1*03:02 (i.e., DR4-DQ8) with the risk of CD differ by country, consistent with additional genetic heterogeneity that further refines risk. Therefore, we examined human leukocyte antigen (HLA) factors other than DR3-DQ2 for their contribution to developing tTGAs. METHODS: The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8,676 infants at an increased HLA-DR-DQ risk for type 1 diabetes and CD into a 15-year prospective surveillance follow-up. Of those followed up, 21% (n=1,813) carried DR3-DQ2/DR3-DQ2, 39% (n=3,359) carried DR3-DQ2/DR4-DQ8, 20% (n=1701) carried DR4-DQ8/DR4-DQ8, and 17% (n=1,493) carried DR4-DQ8/DQ4. Within TEDDY, a nested case-control design of 248 children with CD autoimmunity (CDA) and 248 matched control children were genotyped for HLA-B, -DRB3, -DRB4, -DPA1, and -DPB1 genes, and the entire cohort was genotyped for single-nucleotide polymorphisms (SNPs) using the Illumina ImmunoChip. CDA was defined as a positive tTGA test at two consecutive clinic visits, whereas matching in those with no evidence of tTGAs was based on the presence of HLA-DQ2, country, and sex. RESULTS: After adjustment for DR3-DQ2 and restriction to allele frequency (AF) ≥5%, HLA-DPB1*04:01 was inversely associated with CDA by conditional logistic regression (AF=44%, odds ratio=0.71, 95% confidence interval (CI)=0.53-0.96, P=0.025). This association of time to CDA and HLA-DPB1*04:01 was replicated with statistical significance in the remainder of the cohort using imputation for specific HLA alleles based on SNP genotyping (hazard ratio=0.84, 95% CI=0.73-0.96, P=0.013). CONCLUSIONS: HLA-DPB1*04:01 may reduce the risk of tTGAs, an early marker of CD, among DR3-DQ2 children, confirming that additional variants in the HLA region influence the risk for CDA.