Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Heredity (Edinb) ; 133(3): 137-148, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937604

RESUMEN

Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S. intersepta corals. We uncovered four distinct, cryptic genetic lineages with varying levels of depth-specificity. Shallow-specific lineages exhibited lower heterozygosity and higher inbreeding relative to depth-generalist lineages found across both shallow and mesophotic reefs. Estimation of recent genetic migration rates demonstrated that mesophotic sites are more prolific sources than shallow sites, particularly in the Lower Keys and Upper Keys. Additionally, we compared endosymbiotic Symbiodiniaceae among sampled S. intersepta using the ITS2 region and SYMPORTAL analysis framework, identifying symbionts from the genera Symbiodinium, Breviolum, and Cladocopium. Symbiodiniaceae varied significantly across depth and location and exhibited significant, but weak correlation with host lineage and genotype. Together, these data demonstrate that despite population genetic structuring across depth, some mesophotic populations may provide refuge for shallow populations moving forward and remain important contributors to the overall genetic diversity of this species throughout the region. This study highlights the importance of including mesophotic as well as shallow corals in population genetic assessments and informs future science-based management, conservation, and restoration efforts within Florida Keys National Marine Sanctuary.


Asunto(s)
Antozoos , Genética de Población , Polimorfismo de Nucleótido Simple , Animales , Antozoos/genética , Antozoos/clasificación , Florida , Dinoflagelados/genética , Dinoflagelados/clasificación , Variación Genética , Simbiosis/genética , Genotipo , Arrecifes de Coral
2.
Nature ; 556(7702): 492-496, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670282

RESUMEN

Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Calentamiento Global , Animales , Antozoos/clasificación , Australia , Calor/efectos adversos , Dinámica Poblacional
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941698

RESUMEN

Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.


Asunto(s)
Aclimatación/genética , Antozoos/genética , Arrecifes de Coral , Respuesta al Choque Térmico/genética , Microbiota/genética , Transcriptoma/genética , Animales , Antozoos/clasificación , Antozoos/microbiología , Bacterias/clasificación , Bacterias/genética , Calor , Océano Índico , Microbiota/fisiología , ARN Ribosómico 16S/genética , RNA-Seq/métodos , Simbiosis/genética , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33323482

RESUMEN

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.


Asunto(s)
Exoesqueleto/metabolismo , Antozoos/metabolismo , Calcificación Fisiológica/genética , Carbonato de Calcio/metabolismo , Exoesqueleto/anatomía & histología , Exoesqueleto/química , Animales , Antozoos/anatomía & histología , Antozoos/clasificación , Antozoos/genética , Evolución Biológica , Carbonato de Calcio/química , Fósiles , Filogenia
5.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125787

RESUMEN

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Asunto(s)
Antozoos , Evolución Molecular , Genoma Mitocondrial , Filogenia , Antozoos/genética , Antozoos/clasificación , Animales , Composición de Base
6.
J Struct Biol ; 213(4): 107782, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455069

RESUMEN

Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.


Asunto(s)
Antozoos/genética , Biomineralización/genética , Calcificación Fisiológica/genética , Metamorfosis Biológica/genética , Animales , Antozoos/clasificación , Antozoos/crecimiento & desarrollo , Carbonato de Calcio/metabolismo , Epigenómica/métodos , Epigenómica/tendencias , Predicción , Edición Génica/métodos , Edición Génica/tendencias , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Filogenia , Especificidad de la Especie
7.
Mol Phylogenet Evol ; 161: 107173, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33813021

RESUMEN

The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Filogenia , Animales , Arabia , Teorema de Bayes , ADN Ribosómico , Genoma Mitocondrial , Análisis de Secuencia de ADN
8.
Mol Biol Rep ; 48(3): 2993-2999, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33675466

RESUMEN

As evolutionary relationships among some coral species still remain unclear, studies on unstudied area such as the Persian Gulf (PG), as part of the western Indo-Pacific, may reveal a better understanding of phylogenetic positions and relationships of corals. In the present study, the phylogenetic relationships of eight common coral species (Favites pentagona, Platygyra daedalea, Cyphastrea microphthalma, Siderastrea savignyana, Pavona decussata, Pavona cactus, Goniopora columna, and Goniopora djiboutiensis) collected from two Iranian Islands were compared with the congeneric sequences from the Indo-Pacific (IP) using rDNA region. The result shows that some coral species which were hitherto considered as representatives of widespread species from IP are related to distinct lineages. Further, it appears that morphological convergence between the taxa leads to an underestimation of the real coral species diversity in the PG. The current study is the first attempt to investigate the phylogenetic position of coral species from the PG in comparison to their counterparts from the IP. As conservation planning hinges on the identification of species, taxonomic revisions have to be undertaken in order to obtain a more reliable picture of coral species diversity in the PG.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Filogenia , Animales , Teorema de Bayes , Océano Índico , Islas , Especificidad de la Especie
9.
Zoolog Sci ; 38(5): 466-480, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34664922

RESUMEN

Symbioses between invertebrates are common in the ocean although usually the diversity and specificity of their interactions are not well understood. Parazoanthidae (Cnidaria: Anthozoa: Zoantharia) is one of the most diverse zoantharian families in terms of numbers of genera and species. Species in this family are commonly associated with various other invertebrates that they utilize as their substrate. Previous studies have re-organized the taxonomy of Parazoanthidae and revealed a strong specificity between many parazoanthid species and genera and their substrates. However, our understanding of the species diversity of Parazoanthidae is far from complete, as parazoanthids are often overlooked in sampling surveys. In this study, we establish three subgenera under the genus Umimayanthus Montenegro, Sinniger, and Reimer, 2015; the nominotypical Umimayanthus, Paraumimayanthus subgen nov., and Gorgoniazoanthus subgen. nov., based on the finding of a new species, Umimayanthus (Gorgoniazoanthus) kanabou sp. nov., associated with the sea-whip gorgonian Ellisella sp. from approximately 30 m depth in shallow mesophotic coral reef communities in Oura Bay on Okinawajima Island and in Oshima Strait near Amami-Oshima Island, in the Ryukyu Islands, southern Japan. We additionally report on gastropods and crustaceans observed in association with U. kanabou, and these species are thought to potentially prey upon the zoantharians or on gorgonian polyps. Umimayanthus kanabou is phylogenetically closely related to congeneric sponge-associated Umimayanthus spp., further supporting the recent hypothesis that substrate preferences may change during the evolutionary history of zoantharians.


Asunto(s)
Antozoos/anatomía & histología , Antozoos/clasificación , Especificidad de la Especie , Animales , Antozoos/genética , Crustáceos , Ecosistema , Gastrópodos , Japón , Filogenia , Análisis de Secuencia de ADN
10.
Can J Microbiol ; 67(7): 548-552, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33417515

RESUMEN

Vibrio coralliilyticus, a prominent pathogenic bacteria, is known to cause tissue damage in the coral Pocillopora damicornis and is attracted towards the coral via chemotaxis. However, the potential of V. coralliilyticus to infect most of the other coral hosts via chemotaxis is unknown. In this study, we used capillary assays to quantify the chemotactic response of V. coralliilyticus to the mucus of four tank-cultivated coral species (Cataphyllia jardine, Mussidae sp., Nemenzophyllia turbida, and Euphyllia ancora), and mucus from three wild coral species (Acropora sp., Porites sp., and Montipora sp.). The bacteria showed a positive chemotactic response to each coral mucus tested, with the highest response recorded to the mucus of Acropora sp. and the lowest response to the mucus of Montipora sp. A microfluidic chip was then used to assess the chemotactic preference of V. coralliilyticus to the mucus of the tank cultivated corals. Here too, the bacterium showed positive response, but with a slightly different ranking order. The strong chemotactic response of V. coralliilyticus towards the mucus tested could indicate a broader host range of V. coralliilyticus, and by extension, indicate a threat to weakened coral reefs worldwide.


Asunto(s)
Antozoos/microbiología , Quimiotaxis , Vibrio/fisiología , Animales , Antozoos/clasificación , Antozoos/metabolismo , Arrecifes de Coral , Moco/metabolismo , Moco/microbiología , Vibrio/genética , Vibrio/aislamiento & purificación
11.
Proc Natl Acad Sci U S A ; 115(12): 3084-3089, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507193

RESUMEN

Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species (n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces (n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.


Asunto(s)
Distribución Animal , Antozoos/clasificación , Antozoos/fisiología , Biodiversidad , Animales , Análisis de Componente Principal
12.
Nat Prod Rep ; 37(4): 515-540, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670367

RESUMEN

Covering: up to the end of 2018Zoantharians, also improperly known as zoanthids or colonial anemones, are well known by aquarists because of their ease of use in aquaria but also because of their splendid colours. However, high concentrations of the highly toxic palytoxin found in some species of zoantharians maintained in reef aquaria has raised some issues recently, unveiling at the same time a rather unknown chemical diversity hidden in these marine beauties. Herein, we report the structure of the metabolites described in all species of zoantharians up to the end of 2018 and their associated biological activities. As sessile invertebrates, zoantharians harbour a rich diversity of micro-organisms that can play a role in the biosynthesis of these natural products and we detail the current hypotheses on the metabolic pathways leading to the identified ecdysteroids, zoanthoxanthins, zoanthamines, palytoxins and others. Finally, we assess the possible use of these metabolites in the systematics of such a complex group of marine invertebrates and we discuss their possible ecological roles. Altogether, this review brings some insights into the rich chemical diversity of zoantharians and their potential for marine biodiscovery and marine ecology.


Asunto(s)
Antozoos/química , Antozoos/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Animales , Antozoos/clasificación , Organismos Acuáticos , Productos Biológicos/clasificación , Productos Biológicos/farmacología
13.
Proc Biol Sci ; 287(1921): 20192214, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32070253

RESUMEN

Rapid and unprecedented ecological change threatens the functioning and stability of ecosystems. On coral reefs, global climate change and local stressors are reducing and reorganizing habitat-forming corals and associated species, with largely unknown implications for critical ecosystem functions such as herbivory. Herbivory mediates coral-algal competition, thereby facilitating ecosystem recovery following disturbance such as coral bleaching events or large storms. However, relationships between coral species composition, the distribution of herbivorous fishes and the delivery of their functional impact are not well understood. Here, we investigate how herbivorous fish assemblages and delivery of two distinct herbivory processes, grazing and browsing, differ among three taxonomically distinct, replicated coral habitats. While grazing on algal turf assemblages was insensitive to different coral configurations, browsing on the macroalga Laurencia cf. obtusa varied considerably among habitats, suggesting that different mechanisms may shape these processes. Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Animales , Antozoos/clasificación , Cambio Climático , Herbivoria , Estrés Fisiológico
14.
BMC Microbiol ; 20(1): 124, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429833

RESUMEN

BACKGROUND: Biodiversity and productivity of coral-reef ecosystems depend upon reef-building corals and their associations with endosymbiotic Symbiodiniaceae, which offer diverse functional capabilities to their hosts. The number of unique symbiotic partners (richness) and relative abundances (evenness) have been hypothesized to affect host response to climate change induced thermal stress. Symbiodiniaceae assemblages with many unique phylotypes may provide greater physiological flexibility or form less stable symbioses; assemblages with low abundance phylotypes may allow corals to retain thermotolerant symbionts or represent associations with less-suitable symbionts. RESULTS: Here we demonstrate that true richness of Symbiodiniaceae phylotype assemblages is generally not discoverable from direct enumeration of unique phylotypes in association records and that cross host-species comparisons are biased by sampling and evolutionary patterns among species. These biases can be minimized through rarefaction of richness (rarefied-richness) and evenness (Probability of Interspecific Encounter, PIE), and analyses that account for phylogenetic patterns. These standardized metrics were calculated for individual Symbiodiniaceae assemblages composed of 377 unique ITS2 phylotypes associated with 123 coral species. Rarefied-richness minimized correlations with sampling effort, while maintaining important underlying characteristics across host bathymetry and geography. Phylogenetic comparative methods reveal significant increases in coral bleaching and mortality associated with increasing Symbiodiniaceae assemblage richness and evenness at the level of host species. CONCLUSIONS: These results indicate that the potential flexibility afforded by assemblages characterized by many phylotypes present at similar relative abundances does not result in decreased bleaching risk and point to the need to characterize the overall functional and genetic diversity of Symbiodiniaceae assemblages to quantify their effect on host fitness under climate change.


Asunto(s)
Alveolados/clasificación , Antozoos/clasificación , Antozoos/fisiología , Alveolados/aislamiento & purificación , Animales , Antozoos/parasitología , Biodiversidad , Evolución Biológica , Arrecifes de Coral , Filogenia , Simbiosis , Termotolerancia
15.
Mol Phylogenet Evol ; 153: 106944, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32860973

RESUMEN

Targeted enrichment of genomic DNA can profoundly increase the phylogenetic resolution of clades and inform taxonomy. Here, we redesign a custom bait set previously developed for the cnidarian class Anthozoa to more efficiently target and capture ultraconserved elements (UCEs) and exonic loci within the subclass Hexacorallia. We test this enhanced bait set (targeting 2476 loci) on 99 specimens of scleractinian corals spanning both the "complex" (Acroporidae, Agariciidae) and "robust" (Fungiidae) clades. Focused sampling in the staghorn corals (genus Acropora) highlights the ability of sequence capture to inform the taxonomy of a clade previously deficient in molecular resolution. A mean of 1850 (±298) loci were captured per taxon (955 UCEs, 894 exons), and a 75% complete concatenated alignment of 96 samples included 1792 loci (991 UCE, 801 exons) and ~1.87 million base pairs. Maximum likelihood and Bayesian analyses recovered robust molecular relationships and revealed that species-level relationships within the Acropora are incongruent with traditional morphological groupings. Both UCE and exon datasets delineated six well-supported clades within Acropora. The enhanced bait set will facilitate investigations of the evolutionary history of many important groups of reef corals, particularly where previous molecular marker development has been unsuccessful.


Asunto(s)
Antozoos/clasificación , Filogenia , Animales , Antozoos/genética , Teorema de Bayes
16.
Mol Phylogenet Evol ; 151: 106905, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652124

RESUMEN

Stony corals (Scleractinia) form the basis for some of the most diverse ecosytems on Earth, but we have much to learn about their evolutionary history and systematic relationships. In order to improve our understanding of species in corals we here investigated phylogenetic relationships between morphologically defined species and genetic lineages in the genus Galaxea (Euphyllidae) using a combined phylogenomic and phylogeographic approach. Previous studies revealed the nominal species G. fascicularis included three genetically well-differentiated lineages (L, S & L+) in the western Pacific, but their distribution and relationship to other species in the genus was unknown. Based on genomic (RAD-seq) and mitochondrial sequence data (non-coding region between cytb and ND2) we investigated whether the morphological taxa represent genetically coherent entities and what is the phylogenetic relationship and spatial distribution of the three lineages of G. fascicularis throughout the observed species range. Using the RAD-seq data, we find that the genus Galaxea is monophyletic and contains three distinct clades: an Indo-Pacific, a Pacific, and a small clade restricted to the Chagos Archipelago. The three lineages of G. fascicularis were associated with different RAD-seq clades, with the 'L' lineage showing some morphological distinction from the other two lineages (larger more asymmetrical polyps). In addition to these, three more genetic lineages in G. fascicularis may be distinguished - a Chagossian, an Ogasawaran, and one from the Indian-Red Sea. Among nominal taxa for which we have multiple samples, G. horrescens was the only monophyletic species. The mitochondrial non-coding region is highly conserved apart of the length polymorphism used to define L, S & L+ lineages and lacks the power to distinguish morphological and genetic groups resolved with genomic RAD-sequencing. The polyphyletic nature of most species warrants a careful examination of the accepted taxonomy of this group with voucher collections and their comparison to type specimens to resolve species boundaries. Further insight to the speciation process in corals will require international cooperation for the sharing of specimens to facilitate scientific discovery.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Arrecifes de Coral , Filogeografía , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Variación Genética , Haplotipos/genética , Océano Índico , Mitocondrias/genética , Océano Pacífico , Filogenia , Análisis de Componente Principal
17.
J Nat Prod ; 83(3): 693-705, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31971803

RESUMEN

Sarcophyton glaucum is one of the most abundant and chemically studied soft corals with over 100 natural products reported in the literature, primarily cembrane diterpenoids. Yet, wide variation in the chemistry observed from S. glaucum over the past 50 years has led to its reputation as a capricious producer of bioactive metabolites. Recent molecular phylogenetic analysis revealed that S. glaucum is not a single species but a complex of at least seven genetically distinct species not distinguishable using traditional taxonomic criteria. We hypothesized that perceived intraspecific chemical variation observed in S. glaucum was actually due to differences between cryptic species (interspecific variation). To test this hypothesis, we collected Sarcophyton samples in Palau, performed molecular phylogenetic analysis, and prepared chemical profiles of sample extracts using gas chromatography-flame ionization detection. Both unsupervised (principal component analysis) and supervised (linear discriminant analysis) statistical analyses of these profiles revealed a strong relationship between cryptic species membership and chemical profiles. Liquid chromatography with tandem mass spectrometry-based analysis using feature-based molecular networking permitted identification of the chemical drivers of this difference between clades, including cembranoid diterpenes (2R,11R,12R)-isosarcophytoxide (5), (2S,11R,12R)-isosarcophytoxide (6), and isosarcophine (7). Our results suggest that early chemical studies of Sarcophyton may have unknowingly conflated different cryptic species of S. glaucum, leading to apparently idiosyncratic chemical variation.


Asunto(s)
Antozoos/química , Antozoos/clasificación , Diterpenos/química , Animales , Estructura Molecular , Palau , Filogenia , Metabolismo Secundario
18.
Bioorg Chem ; 94: 103350, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31640933

RESUMEN

One new polycyclic furanobutenolide-derived norcembranoid, xiguscabrolide H (1), together with eleven known related norditerpenoids 2-12 were isolated from South China Sea soft corals Sinularia scabra and S. polydactyla, respectively. Among them, compounds 1, 6, 8, and 12 were discovered from the former species, while compounds 2-5, 7, and 9-11 were obtained from the latter species. The structure of new compound 1 was elucidated by extensive spectroscopic analysis and by the comparison with the reported data. With the assistance of time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculations, its absolute configuration was determined. Moreover, the absolute stereostructures of the known compounds 3, 4, and 9-12, of which only relative configurations were assigned, were established for the first time by X-Ray diffraction analysis and TDDFT-ECD calculations, respectively. In bioassay, several isolates exhibited potent inhibitory effects on the ConA-induced T lymphocytes and/or LPS-induced B lymphocytes proliferation.


Asunto(s)
Antozoos/química , Diterpenos/farmacología , Furanos/farmacología , Inmunosupresores/farmacología , Lactonas/farmacología , Animales , Antozoos/clasificación , Células Cultivadas , Cristalografía por Rayos X , Diterpenos/química , Diterpenos/aislamiento & purificación , Furanos/química , Furanos/aislamiento & purificación , Lactonas/química , Lactonas/aislamiento & purificación , Resonancia Magnética Nuclear Biomolecular , Especificidad de la Especie
19.
Mar Drugs ; 18(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283847

RESUMEN

This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.


Asunto(s)
Venenos de Cnidarios/fisiología , Toxinas Marinas/metabolismo , Anatomía , Animales , Antozoos/clasificación , Cnidarios/clasificación , Humanos , Biología Marina , Toxinas Marinas/química , Toxinas Marinas/toxicidad , Filogenia
20.
BMC Evol Biol ; 19(1): 116, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170912

RESUMEN

BACKGROUND: Our ability to investigate processes shaping the evolutionary diversification of corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries. Discerning species of corals has been challenging due to a multitude of factors, including homoplasious and plastic morphological characters and the use of molecular markers that are either not informative or have not completely sorted. Hybridization can also blur species boundaries by leading to incongruence between morphology and genetics. We used traditional DNA barcoding and restriction-site associated DNA sequencing combined with coalescence-based and allele-frequency methods to elucidate species boundaries and simultaneously examine the potential role of hybridization in a speciose genus of octocoral, Sinularia. RESULTS: Species delimitations using two widely used DNA barcode markers, mtMutS and 28S rDNA, were incongruent with one another and with the morphospecies identifications. When mtMutS and 28S were concatenated, a 0.3% genetic distance threshold delimited the majority of morphospecies. In contrast, 12 of the 15 examined morphospecies formed well-supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species trees of > 6000 RADSeq loci. DAPC and Structure analyses also supported morphospecies assignments, but indicated the potential for two additional cryptic species. Three morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-BABA tests demonstrated significant admixture between some of those species, suggesting that hybridization may confound species delimitation in Sinularia. CONCLUSIONS: A genomic approach can help to guide species delimitation while simultaneously elucidating the processes generating coral diversity. Results support the hypothesis that hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and future research should examine the contribution of this mechanism in generating diversity across the coral tree of life.


Asunto(s)
Antozoos/genética , Hibridación Genética , Animales , Antozoos/clasificación , Código de Barras del ADN Taxonómico , Análisis Discriminante , Funciones de Verosimilitud , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA