Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Chem Rev ; 123(10): 6612-6667, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37071737

RESUMEN

The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.


Asunto(s)
Artritis Reumatoide , Auranofina , Humanos , Auranofina/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Oro , Aurotioglucosa/farmacología , Aurotioglucosa/uso terapéutico , Tiomalato Sódico de Oro/farmacología , Tiomalato Sódico de Oro/uso terapéutico
2.
Anticancer Drugs ; 35(2): 129-139, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615540

RESUMEN

Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.


Asunto(s)
Auranofina , Neoplasias Colorrectales , Humanos , Animales , Ratones , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/patología , Autofagia , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
3.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560881

RESUMEN

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Asunto(s)
Auranofina , Genes myc , Glutamina , Neoplasias Ováricas , Reductasa de Tiorredoxina-Disulfuro , Femenino , Humanos , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Genes myc/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
Bioorg Med Chem ; 79: 117167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682225

RESUMEN

Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología , Factores de Virulencia/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas , Percepción de Quorum , Proteínas Bacterianas/farmacología
5.
Cell Biochem Funct ; 41(8): 1305-1318, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792847

RESUMEN

The intrinsic redox status of cancer cells limits the efficacy of chemotherapeutic drugs. Auranofin, a Food and Drug Administration-approved gold-containing compound, documented with effective pharmacokinetics and safety profiles in humans, has recently been repurposed for anticancer activity. This study examined the paclitaxel-sensitizing effect of auranofin by targeting redox balance in the MDA-MB-231 and MCF-7 breast cancer cell lines. Auranofin treatment depletes the activities of superoxide dismutase, catalase, and glutathione peroxidase and alters the redox ratio in the breast cancer cell lines. Furthermore, it has been noticed that auranofin augmented paclitaxel-mediated cytotoxicity in a concentration-dependent manner in both MDA-MB-231 and MCF-7 cell lines. Moreover, auranofin increased the levels of intracellular reactive oxygen species (observed using 2, 7-diacetyl dichlorofluorescein diacetate staining) and subsequently altered the mitochondrial membrane potential (rhodamine-123 staining) in a concentration-dependent manner. Further, the expression of apoptotic marker p21 was found to be higher in auranofin plus paclitaxel-treated breast cancer cells compared to paclitaxel-alone treatment. Thus, the present results illustrate the chemosensitizing property of auranofin in MDA-MB-231 and MCF-7 breast cancer cell lines via oxidative metabolism. Therefore, auranofin could be considered a chemosensitizing agent during cancer chemotherapy.


Asunto(s)
Neoplasias de la Mama , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Auranofina/farmacología , Auranofina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Oxidación-Reducción , Línea Celular Tumoral , Células MCF-7 , Apoptosis
6.
J Helminthol ; 97: e95, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053397

RESUMEN

Schistosomiasis is a serious tropical disease. Despite extensive research into the etiology of liver fibrosis, effective therapeutic options remain limited. This study aims to assess the effectiveness of auranofin in treating hepatic granuloma and fibrogenesis produced by Schistosoma (S.) mansoni eggs. Auranofin is a gold complex that contains thioglucose tetraacetate and triethylphosphine. Eighty BALB/c male mice were divided into four groups (n=20/group): negative control (GI), positive control (GII), and early (GIII) and late (GIV) treatment groups with oral auranofin according to beginning of treatment 4th week and 6th week post-infection. Mice were infected subcutaneously in a dose of 60±10 cercariae/mouse. Worm counts, egg loads, and oogram patterns were determined. Biochemical, histological, and immunostaining of interleukin-1ß (IL-1ß), Sirtuin 3 (SIRT3), and smooth muscle actin (SMA) were assessed. GIII showed a significant decrease in the total S. mansoni worm burden and ova/gram in liver tissue (with reduction percent of 63.07% and 78.26%, respectively). Schistosomal oogram patterns, immature and mature ova, also showed a significant decrease. The reduction in granuloma number and size was 40.63% and 48.66%, respectively, in GIII, whereas in GIV, the reduction percent was 76.63% and 67.08%. In addition, the degree of fibrosis was significantly diminished in both treated groups. GIV showed significant reduction in IL-1ß and SMA expression and increase in SIRT3 expression. These findings reveal how auranofin suppresses the development of liver fibrosis. Therefore, it is crucial to take another look at auranofin as a prospective medication for the treatment of S. mansoni egg-induced hepatic granuloma and consequent fibrosis.


Asunto(s)
Esquistosomiasis mansoni , Sirtuina 3 , Masculino , Animales , Ratones , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/patología , Auranofina/farmacología , Auranofina/uso terapéutico , Estudios Prospectivos , Sirtuina 3/farmacología , Sirtuina 3/uso terapéutico , Óvulo/patología , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Granuloma/tratamiento farmacológico , Granuloma/patología
7.
Med Res Rev ; 42(3): 1111-1146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34850406

RESUMEN

Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Auranofina/farmacología , Auranofina/uso terapéutico , Resistencia a Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Reductasa de Tiorredoxina-Disulfuro
8.
J Biol Chem ; 295(49): 16678-16690, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978257

RESUMEN

Large regions in tumor tissues, particularly pancreatic cancer, are hypoxic and nutrient-deprived because of unregulated cell growth and insufficient vascular supply. Certain cancer cells, such as those inside a tumor, can tolerate these severe conditions and survive for prolonged periods. We hypothesized that small molecular agents, which can preferentially reduce cancer cell survival under nutrient-deprived conditions, could function as anticancer drugs. In this study, we constructed a high-throughput screening system to identify such small molecules and screened chemical libraries and microbial culture extracts. We were able to determine that some small molecular compounds, such as penicillic acid, papyracillic acid, and auranofin, exhibit preferential cytotoxicity to human pancreatic cancer cells under nutrient-deprived compared with nutrient-sufficient conditions. Further analysis revealed that these compounds target to redox systems such as GSH and thioredoxin and induce accumulation of reactive oxygen species in nutrient-deprived cancer cells, potentially contributing to apoptosis under nutrient-deprived conditions. Nutrient-deficient cancer cells are often deficient in GSH; thus, they are susceptible to redox system inhibitors. Targeting redox systems might be an attractive therapeutic strategy under nutrient-deprived conditions of the tumor microenvironment.


Asunto(s)
Alquenos/química , Auranofina/química , Glutatión/química , Ácido Penicílico/química , Compuestos de Espiro/química , Tiorredoxinas/química , Alquenos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Auranofina/farmacología , Auranofina/uso terapéutico , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Glutatión/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Ratones , Ratones Desnudos , Nutrientes/química , Nutrientes/deficiencia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ácido Penicílico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Espiro/farmacología , Tiorredoxinas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
Int J Cancer ; 146(1): 123-136, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31090219

RESUMEN

Triple-negative breast cancer (TNBCs) is a very aggressive and lethal form of breast cancer with no effective targeted therapy. Neoadjuvant chemotherapies and radiotherapy remains a mainstay of treatment with only 25-30% of TNBC patients responding. Thus, there is an unmet clinical need to develop novel therapeutic strategies for TNBCs. TNBC cells have increased intracellular oxidative stress and suppressed glutathione, a major antioxidant system, but still, are protected against higher oxidative stress. We screened a panel of antioxidant genes using the TCGA and METABRIC databases and found that expression of the thioredoxin pathway genes is significantly upregulated in TNBC patients compared to non-TNBC patients and is correlated with adverse survival outcomes. Treatment with auranofin (AF), an FDA-approved thioredoxin reductase inhibitor caused specific cell death and impaired the growth of TNBC cells grown as spheroids. Furthermore, AF treatment exerted a significant in vivo antitumor activity in multiple TNBC models including the syngeneic 4T1.2 model, MDA-MB-231 xenograft and patient-derived tumor xenograft by inhibiting thioredoxin redox activity. We, for the first time, showed that AF increased CD8+Ve T-cell tumor infiltration in vivo and upregulated immune checkpoint PD-L1 expression in an ERK1/2-MYC-dependent manner. Moreover, combination of AF with anti-PD-L1 antibody synergistically impaired the growth of 4T1.2 primary tumors. Our data provide a novel therapeutic strategy using AF in combination with anti-PD-L1 antibody that warrants further clinical investigation for TNBC patients.


Asunto(s)
Anticuerpos/uso terapéutico , Auranofina/uso terapéutico , Antígeno B7-H1/inmunología , Inhibidores Enzimáticos/uso terapéutico , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Auranofina/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Hepatology ; 69(4): 1768-1786, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30561826

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide which lacks effective treatment. Cancer cells experience high levels of oxidative stress due to increased generation of reactive oxygen species (ROS). Increased antioxidant-producing capacity is therefore found in cancer cells to counteract oxidative stress. The thioredoxin system is a ubiquitous mammalian antioxidant system which scavenges ROS, and we demonstrate that it is vital for HCC growth as it maintains intracellular reduction-oxidation (redox) homeostasis. Transcriptome sequencing in human HCC samples revealed significant overexpression of thioredoxin reductase 1 (TXNRD1), the cytosolic subunit and key enzyme of the thioredoxin system, with significant correlations to poorer clinicopathological features and patient survival. Driven by the transcriptional activation of nuclear factor (erythroid-derived 2)-like 2, the master protector against oxidative stress, TXNRD1 counteracts intracellular ROS produced in human HCC. Inhibition of TXNRD1 through genetic inhibition hindered the proliferation of HCC cells and induced apoptosis in vitro. Administration of the pharmacological TXNRD1 inhibitor auranofin (AUR) effectively suppressed the growth of HCC tumors induced using the hydrodynamic tail vein injection and orthotopic implantation models in vivo. Furthermore, AUR sensitized HCC cells toward the conventional therapeutic sorafenib. Conclusion: Our study highlights the reliance of HCC cells on antioxidants for redox homeostasis and growth advantage; targeting TXNRD1 resulted in dramatic accumulation of ROS, which was found to be an effective approach for the suppression of HCC tumor growth.


Asunto(s)
Auranofina/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tiorredoxina Reductasa 1/metabolismo , Animales , Antineoplásicos/uso terapéutico , Auranofina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Sorafenib/uso terapéutico , Tiorredoxina Reductasa 1/antagonistas & inhibidores
11.
Med Mycol ; 58(6): 810-819, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868212

RESUMEN

Despite the fact that many approaches have been developed over years to find efficient and well-tolerated therapeutic regimens for microsporidiosis, the effectiveness of current drugs remains doubtful, and effective drugs against specific targets are still scarce. The present study is the first that was designed to evaluate the potency of auranofin, an anti-rheumatoid FDA approved drug, against intestinal Encephalitozoon intestinalis. Evaluation of the drug was achieved through counting of fecal and intestinal spores, studying the intestinal histopathological changes, measuring of intestinal hydrogen peroxide level, and post therapy follow-up of mice for 2 weeks for detection of relapse. Results showed that auranofin has promising anti-microsporidia potential. It showed a promising efficacy in mice experimentally infected with E. intestinalis. It has revealed an obvious reduction in fecal spore shedding and intestinal tissue spore load, amelioration of intestinal tissue pathological changes, and improvement of the local inflammatory infiltration without significant changes in hydrogen peroxide level. Interestingly, auranofin prevented the relapse of infection. Thus, considering the results of the present work, auranofin could be considered a therapeutic alternative for the gold standard drug 'albendazole' against the intestinal E. intestinalis infection especially in relapsing cases.


Asunto(s)
Antifúngicos/uso terapéutico , Auranofina/uso terapéutico , Encephalitozoon/efectos de los fármacos , Encefalitozoonosis/tratamiento farmacológico , Intestinos/microbiología , Animales , Antifúngicos/farmacología , Auranofina/farmacología , Modelos Animales de Enfermedad , Encephalitozoon/genética , Encefalitozoonosis/microbiología , Heces/microbiología , Humanos , Masculino , Ratones , Microsporidios/efectos de los fármacos , Microsporidiosis/tratamiento farmacológico , Microsporidiosis/microbiología , Prevención Secundaria
12.
J Toxicol Environ Health A ; 82(10): 626-637, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258040

RESUMEN

Auranofin is a gold complex categorized as an anti-rheumatic agent. Recently, several investigators suggested that auranofin may act as a potent anti-cancer drug for breast tumors. Nutlin-3a is a cis-imidazoline analog which prevents interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The aim of this study was to examine cell growth inhibition mediated by auranofin or nutlin-3a individually as well as in combination with MCF-7 and MDA-MB-231 cells. To assess any potential synergistic effects between auranofin and nutlin-3a, low concentrations of auranofin and nutlin-3a were simultaneously incubated with MCF-7 and MDA-MB-231 cells. Cell viability assay, caspase-3/7 assay, and poly (ADP-ribose) polymerase cleavage revealed that auranofin and nutlin-3a exerted a synergistic effect on cancer cell apoptosis. Isobologram analysis of MCF-7 and MDA-MB-231 cells noted evident synergism between auranofin and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bcl-2 associated X protein and Bcl-2 homologous antagonist/killer. Further, combination treatment significantly enhanced reactive oxygen species (ROS) generation in MCF-7 and MDA-MB-231 cells. In conclusion, data demonstrated that combined treatment with auranofin and nutlin-3a exhibited a synergistic action on breast cancer cells and this combination may be considered for use as a novel therapeutic strategy for breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Auranofina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Citotoxinas/uso terapéutico , Imidazoles/uso terapéutico , Piperazinas/uso terapéutico , Células Tumorales Cultivadas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Modelos Animales
13.
Cell Physiol Biochem ; 45(6): 2421-2430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29554646

RESUMEN

BACKGROUND/AIMS: Cardiac hypertrophy is a major outcome and compensatory response of the cardiovascular system to hemodynamic and additional stress responses that ultimately lead to heart failure. Auranofin (Aur) has been used for treating rheumatic arthritis for several decades. Aur is a 19S proteasome-associated deubiquitinase inhibitor, and inhibition of the proteasome is speculated to reverse cardiac hypertrophy. However, the role of the deubiquitinases, especially 19S proteasome-associated deubiquitinases, in the regulation of cardiac remodeling remains poorly understood. The present study investigated the role of Aur in cardiac hypertrophy both in vitro and in vivo. METHODS: Male Sprague-Dawley rats underwent abdominal aortic constriction to induce left ventricular hypertrophy. The neonatal rat primary myocardial cell hypertrophy model was induced by Ang II. Echocardiography, hematoxylin-eosin staining, Masson's trichrome staining, immunochemistry, western blot analysis, a cell viability assay, and enzyme-linked immunosorbent assay were performed. RESULTS: Aur significantly reduced the abdominal aortic constriction that led to left ventricular hypertrophy, reduced heart cavity expansion, and functional disorder, and thereby reduced fetal gene expression and attenuated cardiac fibrosis. Furthermore, Aur caused marked accumulation of ubiquitinated proteins and IκBα, as well as inactivation of NF-κB. This phenomenon was confirmed in the neonatal rat primary myocardial cell hypertrophy model. CONCLUSIONS: The present study indicated that Aur blocks the development of left ventricular hypertrophy induced by abdominal aortic constriction. This phenomenon might be attributed to inhibition of the 19S proteasome-associated deubiquitinase that can lead to aggregation of IκBα and inactivation of the NF-κB pathway. Thus, Aur could be a potential anti-cardiac hypertrophy agent.


Asunto(s)
Antirreumáticos/uso terapéutico , Auranofina/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Enzimas Desubicuitinizantes/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Inhibidores de Proteasoma/uso terapéutico , Animales , Antirreumáticos/farmacología , Auranofina/farmacología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Enzimas Desubicuitinizantes/metabolismo , Hipertrofia Ventricular Izquierda , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Inhibidores de Proteasoma/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
14.
BMC Cancer ; 18(1): 522, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724201

RESUMEN

BACKGROUND: The orally available gold complex auranofin (AF) has been used in humans, primarily as an antirheumatic/immunomodulatory agent. It has been safely administered to healthy dogs to establish pharmacokinetic parameters for oral administration, and has also been used as a treatment in some dogs with immune-mediated conditions. Multiple in vitro studies have recently suggested that AF may possess antineoplastic properties. Spontaneous canine lymphoma may be a very useful translational model for the study of human lymphoma, prompting the evaluation of AF in canine lymphoma cells. METHODS: We investigated the antineoplastic activity of AF in 4 canine lymphoid tumor derived cell lines through measurements of proliferation, apoptosis, thioredoxin reductase (TrxR) activity and generation of reactive oxygen species (ROS), and detected the effects of AF when combined with conventional cytotoxic drugs using the Chou and Talalay method. We also evaluated the antiproliferative effects of AF in primary canine lymphoma cells using a bioreductive fluorometric assay. RESULTS: At concentrations that appear clinically achievable in humans, AF demonstrated potent antiproliferative and proapoptotic effects in canine lymphoid tumor cell lines. TrxR inhibition and increased ROS production was observed following AF treatment. Moreover, a synergistic antiproliferative effect was observed when AF was combined with lomustine or doxorubicin. CONCLUSIONS: Auranofin appears to inhibit the growth and initiate apoptosis in canine lymphoma cells in vitro at clinically achievable concentrations. Therefore, this agent has the potential to have near-term benefit for the treatment of canine lymphoma, as well as a translational model for human lymphoma. Decreased TrxR activity and increasing ROS production may be useful biomarkers of drug exposure.


Asunto(s)
Antineoplásicos/farmacología , Auranofina/farmacología , Linfoma/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Auranofina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perros , Ensayos de Selección de Medicamentos Antitumorales , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
16.
Exp Parasitol ; 166: 189-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26183422

RESUMEN

Chagas disease, Sleeping Sickness, Nagana and Leishmaniasis are serious infections caused by protozoa of the order Kinetoplastidae. They were described over a century ago by seminal work of different physician-researchers and, despite the initial discoveries, few drugs have been made available for the treatment of these infections. The drugs available present serious efficacy and toxicity problems. Moreover, the emergence of resistant strains has rendered the development of novel chemotherapeutic strategies a priority. Auranofin is currently in use to treat rheumatoid arthritis in humans. Previous reports showed that this compound presents activity against Trypanosoma brucei and Leishmania cells. In Trypanosoma cruzi cells, auranofin resulted in a more potent compound than benznidazole in vitro when tested in different DTUs. In vivo experiments, although not decreasing T. cruzi parasitemia, decreases host mortality. Therefore, we propose auranofin as a potential alternative for a new chemotherapy in Chagas disease with the added advantage of already being approved for use in humans.


Asunto(s)
Auranofina/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Auranofina/uso terapéutico , Línea Celular , Enfermedad de Chagas/parasitología , Femenino , Fibroblastos/parasitología , Humanos , Concentración 50 Inhibidora , Dosificación Letal Mediana , Ratones , Ratones Endogámicos BALB C , Nitroimidazoles/farmacología , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Distribución Aleatoria , Organismos Libres de Patógenos Específicos , Tripanocidas/uso terapéutico
17.
Oncology ; 88(4): 208-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25502607

RESUMEN

PURPOSE: This trial was undertaken (1) to determine the feasibility of enrolling asymptomatic ovarian cancer patients with CA-125 elevation in a trial with the protein kinase C iota (PKCι) inhibitor auranofin and (2) to understand patients' perceptions of CA-125 monitoring. METHODS: Asymptomatic ovarian cancer patients with CA-125 elevation received 3 mg auranofin orally twice per day and were evaluated. The patients participated in interviews about CA-125 monitoring. RESULTS: Ten patients were enrolled in slightly over 6 months, exceeding our anticipated accrual rate. Four manifested stable CA-125 levels for 1 month or longer. The median progression-free survival was 2.8 months (95% CI: 1.3-3.8); auranofin was well tolerated. One patient had baseline and monthly CA-125 levels of 5,570, 6,085, 3,511, and 2,230 U/ml, respectively, stopped auranofin because of radiographic progression at 3 months, and manifested an increase in CA-125 to 7,168 U/ml approximately 3 months later. Patient interviews revealed (1) the important role of CA-125 in cancer monitoring, (2) ardent advocacy of CA-125 testing, and (3) an evolution toward CA-125 assuming a life of its own. CONCLUSIONS: This study showed the feasibility of enrolling asymptomatic ovarian cancer patients with CA-125 elevation in a trial with auranofin. One patient had a decline in CA-125, suggesting that PKCι inhibition merits further study in ovarian cancer.


Asunto(s)
Antirreumáticos/uso terapéutico , Auranofina/uso terapéutico , Isoenzimas/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Proteína Quinasa C/antagonistas & inhibidores , Administración Oral , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Antígeno Ca-125/metabolismo , Esquema de Medicación , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Proyectos Piloto , Pronóstico , Tasa de Supervivencia
18.
Biometals ; 27(4): 787-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24820140

RESUMEN

Auranofin, (AF), a gold(I) complex in clinical use for the therapy of rheumatoid arthritis, is reported here to produce remarkable bactericidal effects in vitro against Staphylococcus sp. Noticeably, a similar antimicrobial action and potency are also noticed toward a few methicillin-resistant Staphylococcus aureus strains but not toward Escherichia coli. The time and concentration dependencies of the antimicrobial actions of AF have been characterized through recording time kill curves, and a concentration dependent profile highlighted. Overall, the present results point out that auranofin might be quickly and successfully repurposed for the treatment of severe bacterial infections due to resistant Staphylococci.


Asunto(s)
Antibacterianos/farmacología , Auranofina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/uso terapéutico , Auranofina/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
19.
ACS Appl Bio Mater ; 7(3): 2012-2022, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38450675

RESUMEN

Triple-negative breast cancer (TNBC) remains a clinical challenge due to molecular, metabolic, and genetic heterogeneity as well as the lack of validated drug targets. Thus, therapies or delivery paradigms are needed. Gold-derived compounds including the FDA-approved drug, auranofin have shown promise as effective anticancer agents against several tumors. To improve the solubility and bioavailability of auranofin, we hypothesized that the nanodelivery of auranofin using biodegradable chitosan modified polyethylene glycol (PEG) nanoparticles (NPs) will enhance anticancer activity against TNBC by comparing the best nanoformulation with the free drug. The selection of the nanoformulation was based on synthesis of various chitosan PEG copolymers via formaldehyde-mediated engraftment of PEG onto chitosan to form [chitosan-g-PEG] copolymer. Furthermore, altered physiochemical properties of the copolymer was based on the formaldehyde ratio towards nanoparticles (CP 1-4 NPs). Following the recruitment of PEG onto the chitosan polymer surface, we explored how this process influenced the stiffness of the nanoparticle using atomic force microscopy (AFM), a factor crucial for in vitro and in vivo studies. Our objective was to ensure the full functionality and inherent properties of chitosan as the parent polymer was maintained without allowing PEG to overshadow chitosan's unique cationic properties while improving solubility in neutral pH. Hence, CP 2 NP was chosen. To demonstrate the efficacy of CP 2 NP as a good delivery carrier for auranofin, we administered a dose of 3 mg/kg of auranofin, in contrast to free auranofin, which was given at 5 mg/kg. In vivo studies revealed the potency of encapsulated auranofin against TNBC cells with a severe necrotic effect following treatment superior to that of free auranofin. In conclusion, chitosan-g-PEG nanoparticles have the potential to be an excellent delivery system for auranofin, increasing its effectiveness and potentially reducing its clinical limitations.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Quitosano/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Auranofina/farmacología , Auranofina/uso terapéutico , Polímeros/química , Polietilenglicoles/química , Nanopartículas/química , Formaldehído/uso terapéutico
20.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38349407

RESUMEN

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Asunto(s)
Disulfiram , Leucemia Mieloide Aguda , Humanos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Leucemia Mieloide Aguda/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA