Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785133

RESUMEN

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Asunto(s)
Meiosis , Oocitos , Biosíntesis de Proteínas , Factores de Transcripción , Factores de Escisión y Poliadenilación de ARNm , Animales , Femenino , Ratones , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Oocitos/metabolismo , Oocitos/citología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428643

RESUMEN

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Asunto(s)
Aurora Quinasa A , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Colangiocarcinoma/etiología , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ratones , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/etiología , Neoplasias de los Conductos Biliares/metabolismo , Humanos , Ratones Noqueados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Conductos Biliares Extrahepáticos/patología , Modelos Animales de Enfermedad , Colangitis/patología , Colangitis/etiología , Colangitis/metabolismo , Colangitis/genética , Transducción de Señal
3.
Biochem Biophys Res Commun ; 703: 149687, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38368674

RESUMEN

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Apoptosis/genética , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Tolerancia a Radiación/genética , Proteína p53 Supresora de Tumor
4.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839173

RESUMEN

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Humanos , Aurora Quinasa A/metabolismo , Quinazolinas/farmacología , Organofosfatos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores del Factor Estimulante de Colonias
5.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961488

RESUMEN

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Asunto(s)
Aurora Quinasa A , Centriolos , Cilios , Cilios/metabolismo , Humanos , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Centriolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
6.
J Chem Inf Model ; 64(12): 4759-4772, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38857305

RESUMEN

The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.


Asunto(s)
Aurora Quinasa A , Aurora Quinasa B , Simulación de Dinámica Molecular , Aurora Quinasa B/metabolismo , Aurora Quinasa B/química , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Aurora Quinasa A/química , Aurora Quinasa A/antagonistas & inhibidores , Pirazoles/química , Pirazoles/metabolismo , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Unión Proteica , Humanos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Termodinámica
7.
J Biochem Mol Toxicol ; 38(8): e23771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39015057

RESUMEN

Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.


Asunto(s)
Aurora Quinasa A , Neoplasias del Colon , Ferroptosis , MicroARNs , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Ferroptosis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Células HT29 , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Progresión de la Enfermedad , ARN Neoplásico/genética , ARN Neoplásico/metabolismo
8.
Skin Res Technol ; 30(8): e13899, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112439

RESUMEN

BACKGROUND: Due to its rarity, subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is often misdiagnosed as benign panniculitis, and there are no standardized treatment guidelines for SPTCL. Aurora kinase A (AURKA) plays a regulatory role in both mitosis and meiosis. Cells treated with an AURKA inhibitor showed severe mitotic delay, which triggered apoptosis. MATERIALS AND METHODS: Ten cases of SPTCL were collected in this study, and immunohistochemistry was performed to detect AURKA expression in the skin tissues of these cases. Control groups were set as follows: 1) 10 cases of inflammatory panniculitis; 2) 9 healthy individuals. Fisher's exact test was used to compare the positive rates of AURKA among various groups. RESULTS: An average onset age of 27.3 years was found in 10 SPTCL cases. Clinically, these patients primarily presented with multiple subcutaneous nodules on the trunk and lower extremities, accompanied by intermittent high fever. One case showed lymph node metastasis, while no other distant organ metastasis being observed in any case. Pathologically, there was an infiltration of a large number of atypical lymphocytes within the fat lobules, characterized as a cytotoxic type. AURKA stanning was positive in 6 out of 10 SPTCL cases, while no positive cases were found in the control groups. CONCLUSION: 1) SPTCL predominantly affects young individuals and can be identified by nodular erythema on the trunk, intermittent high fever, and infiltration of atypical cytotoxic lymphocytes within fat lobules. 2) For early-stage cases without metastasis, monotherapy with glucocorticoids or immunosuppressants such as cyclosporine can be considered. 3) High expression of AURKA in SPTCL tissues suggests that AURKA could be a potential biomarker for disease diagnosis, providing a theoretical basis for further targeted therapy.


Asunto(s)
Aurora Quinasa A , Linfoma de Células T , Paniculitis , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Paniculitis/enzimología , Paniculitis/patología , Femenino , Masculino , Adulto , Linfoma de Células T/patología , Linfoma de Células T/enzimología , Linfoma de Células T/genética , Adulto Joven , Diagnóstico Diferencial , Persona de Mediana Edad , Adolescente , Piel/patología , Inmunohistoquímica
9.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892390

RESUMEN

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Aurora Quinasa A , Lisosomas , Neuronas , Aurora Quinasa A/metabolismo , Animales , Neuronas/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Ratas , Lisosomas/metabolismo , Fosforilación , Línea Celular Tumoral , Encéfalo/metabolismo , Células Cultivadas , Masculino , Secretasas de la Proteína Precursora del Amiloide/metabolismo
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673957

RESUMEN

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.


Asunto(s)
Aurora Quinasa A , Biomarcadores de Tumor , Ferroptosis , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Ferroptosis/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Masculino , Femenino , Estimación de Kaplan-Meier , Proliferación Celular/genética
11.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739003

RESUMEN

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Asunto(s)
Aurora Quinasa A , Cisplatino , Transición Epitelial-Mesenquimal , Alcaloides Indólicos , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Antineoplásicos/farmacología , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Alcaloides Indólicos/farmacología , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
12.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177680

RESUMEN

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Asunto(s)
Aurora Quinasa A , Mitosis , Animales , Fosforilación , Aurora Quinasa A/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo
13.
STAR Protoc ; 5(2): 103008, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38602870

RESUMEN

Aurora A is a critical kinase that functions in centrosome maturation and bipolar spindle assembly. On the other hand, Aurora A has E3 ubiquitin ligase activity and polyubiquitinates Breast cancer gene 1 (BRCA1)-interacting protein Obg-like ATPase 1 (OLA1), targeting it for proteasomal degradation. Here, we present a protocol to detect OLA1 ubiquitination. We describe steps for recovering frozen cells and protein purification. We then detail assays for both in vivo and in vitro ubiquitination of OLA1 by Aurora A. For complete details on the use and execution of this protocol, please refer to Fang et al.1.


Asunto(s)
Aurora Quinasa A , Ubiquitinación , Humanos , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Adenosina Trifosfatasas/metabolismo
14.
Endocrinology ; 165(4)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340326

RESUMEN

Ovarian endometriosis (EMs) is a benign, estrogen-dependent gynecological disorder. Estrogen receptor beta (ERß), a nuclear receptor for estradiol, plays an important role in the development of ovarian EMs. Here, we investigated the biological significance of aurora kinase A (AURKA) in ovarian EMs and the mechanism by which it regulates ERß. We used immunohistochemical assays to verify that AURKA and ERß were highly expressed in ectopic endometrial tissues. Cell proliferation and colony formation assays were used to demonstrate that AURKA promoted the proliferation of EMs cells. Wound-healing assay, Transwell migration assay, and Matrigel invasion assay further showed that AURKA enhanced the ability of EMs cells to migrate and invade. In addition, AURKA was shown to stimulate glycolysis in EMs cells by measuring the concentration of glucose and lactate in the cell supernatants. Moreover, the AURKA inhibitor alisertib was found to inhibit the progression of ovarian EMs and glycolysis in a mouse model of EMs by measuring ectopic tissues as well as by testing the peritoneal fluid of mice. Furthermore, coimmunoprecipitation assay showed that AURKA interacted with ERß. The rescue experiments confirmed that AURKA regulated the development and glycolysis of ovarian EMs in an ERß-dependent manner. AURKA contributed to the development of ovarian EMs by upregulating of ERß. AURKA may represent a new target for the treatment of ovarian EMs.


Asunto(s)
Endometriosis , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Receptor beta de Estrógeno/metabolismo , Glucólisis
15.
Cell Death Dis ; 15(3): 233, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521813

RESUMEN

AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.


Asunto(s)
Aurora Quinasa A , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Asparagina , Aurora Quinasa A/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
16.
Ann Med ; 56(1): 2282184, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738386

RESUMEN

AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.


AURKA plays an important role in the control of the proliferation, invasion, cell cycle regulation and self-renewal of cancer stem cells.Small molecule kinase inhibitors targeting AURKA have been developed, but the overall response rate of patients in clinical trials is not ideal, prompting us to pay attention to the non-kinase activity of AURKA.This review focuses on the nuclear function of AURKA and its oncogenic properties independent of kinase activity, demonstrating that the nuclear substrate of AURKA and the remote allosteric site of the kinase may be targets of anticancer therapy.


Asunto(s)
Aurora Quinasa A , Carcinogénesis , Núcleo Celular , Humanos , Aurora Quinasa A/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Núcleo Celular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Inhibidores de Proteínas Quinasas/farmacología , Animales
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447882

RESUMEN

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Asunto(s)
Aurora Quinasa A , Proteínas de Ciclo Celular , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Inestabilidad Genómica , Inestabilidad Cromosómica/genética , Cromosomas/metabolismo
18.
Cell Death Dis ; 15(1): 99, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287009

RESUMEN

Ewing's sarcoma (ES) is a rare and highly aggressive malignant tumor arising from bone and soft tissue. Suffering from intractable or recurrent diseases, the patients' therapy options are very limited. It is extremely urgent to identify novel potential therapeutic targets for ES and put them into use in clinical settings. In the present study, high-throughput screening of a small molecular pharmacy library was performed. The killing effect of the Aurora kinase A (AURKA) inhibitor TCS7010 in ES cells was identified, and AURKA was selected as the research object for further study. Disparate suppressants were adopted to study the cell death manner of TCS7010. TCS7010 and RNA silencing were used to evaluate the functions of AURKA in the apoptosis and ferroptosis of ES cells. Co-immunoprecipitation assay was used to investigate the correlation of AURKA and nucleophosmin1 (NPM1) in ES. Nude-mice transplanted tumor model was used for investigating the role of AURKA in ES in vivo. Investigations into the protein activities of AURKA were conducted using ES cell lines and xenograft models. AURKA was found to be prominently upregulated in ES. The AURKA expression level was remarkably connected to ES patients' shorter overall survival (OS) and event-free survival (EFS). Furthermore, AURKA inhibition markedly induced the apoptosis and ferroptosis of ES cells and attenuated tumorigenesis in vivo. On the part of potential mechanisms, it was found that AURKA inhibition triggered the apoptosis and ferroptosis of ES cells through the NPM1/Yes1 associated transcriptional regulator (YAP1) axis, which provides new insights into the tumorigenesis of ES. AURKA may be a prospective target for clinical intervention in ES patients.


Asunto(s)
Ferroptosis , Sarcoma de Ewing , Animales , Humanos , Ratones , Apoptosis/genética , Aurora Quinasa A/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Ferroptosis/genética , Proteínas Nucleares/uso terapéutico , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
19.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783101

RESUMEN

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Asunto(s)
Aurora Quinasa A , Proteína de Unión a CREB , Proteínas Proto-Oncogénicas c-myc , Mutaciones Letales Sintéticas , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Sci Rep ; 14(1): 4808, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413710

RESUMEN

Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.


Asunto(s)
Aurora Quinasa A , Glicoles , Proteínas Asociadas a Microtúbulos , Animales , Femenino , Masculino , Ratones , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Semen/metabolismo , Huso Acromático/metabolismo , Polos del Huso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA