Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549256

RESUMEN

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Asunto(s)
Bombyx , Ingeniería Genética , Animales Modificados Genéticamente , Animales , Pigmentos Biológicos/biosíntesis , Betalaínas/biosíntesis , Betalaínas/química , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Color
2.
Plant J ; 120(1): 406-419, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38976238

RESUMEN

Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.


Asunto(s)
Minería de Datos , Filogenia , Plantas/genética , Plantas/metabolismo , Plantas/clasificación , Genoma de Planta/genética , Betalaínas/metabolismo , Caryophyllales/genética , Caryophyllales/metabolismo
3.
Plant Physiol ; 196(1): 446-460, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38829803

RESUMEN

A unique family of decarboxylated betalains derived from dopamine has recently been discovered. Due to the lack of chemical standards, the existence and distribution of decarboxylated betalains in nature remain unknown. Traditional betalains contain L-dihydroxyphenylalanine as the starting point of the biosynthetic pathway and betalamic acid as a structural and functional unit, while the recently discovered betalains rely on dopamine. Here, 30 dopamine-derived betalains were biotechnologically produced, purified, and characterized, creating an unprecedented library to explore their properties and presence in nature. The maximum absorbance wavelengths for the pigments ranged between 461 and 485 nm. HPLC analysis showed retention times between 0.6 and 2.2 min higher than traditional betalains due to their higher hydrophobicity. The presence of decarboxybetalains in nature was screened using HPLC-ESI-Q-TOF mass spectrometry in various species of the Amaranthaceae family: beetroot (Beta vulgaris subsp. vulgaris), Swiss chard (B. vulgaris var. cicla), celosia (Celosia argentea var. plumosa), and quinoa (Chenopodium quinoa). The latter species had the highest content of decarboxybetalains (28 compounds in its POEQ-143 variety). Twenty-nine pigments were found distributed among the different analyzed plant sources. The abundance of decarboxybetalains demonstrated in this work highlights these pigments as an important family of phytochemicals in the order Caryophyllales.


Asunto(s)
Betalaínas , Dopamina , Pigmentos Biológicos , Betalaínas/química , Betalaínas/metabolismo , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/química , Cromatografía Líquida de Alta Presión , Dopamina/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo
4.
Plant Physiol ; 195(3): 2456-2471, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498597

RESUMEN

Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was coexpressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.


Asunto(s)
Beta vulgaris , Betalaínas , Nicotiana , Plantas Modificadas Genéticamente , Tirosina , Betalaínas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Dioxigenasas/metabolismo , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Levodopa/metabolismo
5.
Plant Mol Biol ; 114(3): 61, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764076

RESUMEN

Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.


Asunto(s)
Betalaínas , Nicotiana , Interferencia de ARN , Betalaínas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
6.
BMC Plant Biol ; 24(1): 614, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937670

RESUMEN

BACKGROUND: Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS: We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet."  Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS: This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.


Asunto(s)
Betacianinas , Flores , Ingeniería Genética , Betacianinas/metabolismo , Flores/genética , Flores/metabolismo , Pigmentación/genética , Caryophyllales/genética , Caryophyllales/metabolismo , Plantas Modificadas Genéticamente/genética , Betalaínas/metabolismo
7.
Plant Biotechnol J ; 22(5): 1312-1324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213076

RESUMEN

Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Color , Estudio de Asociación del Genoma Completo , Betalaínas/metabolismo , Genómica , Semillas/genética
8.
New Phytol ; 241(1): 471-489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897060

RESUMEN

In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain-pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation. Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB-bHLH-WD40) trasnscription factor complex, within betalain-pigmented lineages. Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain-pigmented lineages, with the notable exception of TT19 orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late-stage flavonoid pathway genes upstream of TT19 also manifest strikingly reduced expression in betalain-pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis. Consequently, the loss and exclusion of anthocyanins in betalain-pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.


Asunto(s)
Antocianinas , Caryophyllales , Humanos , Antocianinas/metabolismo , Betalaínas , Caryophyllales/genética , Evolución Biológica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
9.
New Phytol ; 243(3): 1082-1100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38584577

RESUMEN

Betalains are coloring pigments produced in some families of the order Caryophyllales, where they replace anthocyanins as coloring pigments. While the betalain pathway itself is well studied, the tissue-specific regulation of the pathway remains mostly unknown. We enhance the high-quality Amaranthus hypochondriacus reference genome and produce a substantially more complete genome annotation, incorporating isoform details. We annotate betalain and anthocyanin pathway genes along with their regulators in amaranth and map the genetic control and tissue-specific regulation of the betalain pathway. Our improved genome annotation allowed us to identify causal mutations that lead to a knock-out of red betacyanins in natural accessions of amaranth. We reveal the tissue-specific regulation of flower color via a previously uncharacterized MYB transcription factor, AhMYB2. Downregulation of AhMYB2 in the flower leads to reduced expression of key betalain enzyme genes and loss of red flower color. Our improved amaranth reference genome represents the most complete genome of amaranth to date and is a valuable resource for betalain and amaranth research. High similarity of the flower betalain regulator AhMYB2 to anthocyanin regulators and a partially conserved interaction motif support the co-option of anthocyanin regulators for the betalain pathway as a possible reason for the mutual exclusiveness of the two pigments.


Asunto(s)
Amaranthus , Betalaínas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Anotación de Secuencia Molecular , Proteínas de Plantas , Amaranthus/genética , Amaranthus/metabolismo , Betalaínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Antocianinas/metabolismo , Flores/genética , Pigmentación/genética , Mapeo Cromosómico , Genes de Plantas , Mutación/genética
10.
PLoS Biol ; 19(7): e3001326, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260583

RESUMEN

Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.


Asunto(s)
Betalaínas/metabolismo , Micorrizas/crecimiento & desarrollo , Genes Fúngicos , Marcadores Genéticos , Medicago truncatula/microbiología , Micorrizas/genética , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Simbiosis/genética , Nicotiana/genética , Nicotiana/microbiología
11.
Am J Bot ; 111(4): e16308, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38581167

RESUMEN

PREMISE: Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS: We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS: We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS: Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.


Asunto(s)
Caryophyllales , Plantas Medicinales , Caryophyllales/metabolismo , Caryophyllales/genética , Plantas Medicinales/metabolismo , Medicina Tradicional , Filogenia , Tirosina/metabolismo , Betalaínas/metabolismo , Fenilalanina/metabolismo
12.
J Basic Microbiol ; 64(9): e2300721, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825809

RESUMEN

Pigments are widely used in food supplements envisaging attractive colors along with health benefits. The desired advancements in the nutraceutical and antioxidant properties of pigments utilized in food products necessitate the search for novel additives. The present study is the first in the field to report the pigment-producing endolichenic bacteria, Bacillus sp. LDAB-1 from Dirinaria aegilita. Morphological, biochemical, and molecular characterization of the bacterium emphasizes that ideal pigment production occurs when utilizing sucrose and sodium nitrate. The pigment was salted out and dialyzed for further qualitative characterization using ultraviolet-visible, fluorescence, and Fourier transform infrared spectra and the results corroborated the presence of betalains. The antioxidant activity of betalain is closer to the efficiency of α-tocopherol, which confers the pigment properties for antioxidant and nutraceutical significance. An optimal methodology for pigment affirmation is an issue when using an alternative methodology. Hence, the present assessment employs a comparative analysis of findings from both a spectrophotometric method and image processing technology encompassing RGB, CMYK, YCbCr, and L*a*b* color space models. Amongst these, the L*a*b* model potentially provides an effective modality for determining the pigment concentration. Bland-Altman plot analysis indicates similar consistency levels in betalain quantification by both methods at 95% confidence intervals, affirming the integrity and consistency of color image processing technology. Consequently, the present study represents novelty and innovativeness in reporting endolichenic Bacillus sp. LDAB-1 from D. aegilita and a rational image optimization protocol for pigment elucidation characteristics.


Asunto(s)
Antioxidantes , Bacillus , Betalaínas , Pigmentos Biológicos , Bacillus/metabolismo , Betalaínas/biosíntesis , Betalaínas/metabolismo , Antioxidantes/metabolismo , Pigmentos Biológicos/biosíntesis , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía Infrarroja por Transformada de Fourier
13.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792103

RESUMEN

The aim of this work was to assess the chemical composition and physico-chemical, techno-functional, and in vitro antioxidant properties of flours obtained from the peel and flesh of pitahaya (Hylocereus ocamponis) to determine their potential for use as ingredients for food enrichment. The chemical composition, including total betalains, mineral content, and polyphenolic profile, was determined. The techno-functional properties (water holding, oil holding, and swelling capacities) were also evaluated. For the antioxidant capacity, four different methodologies, namely ferrous ion-chelating ability assay, ferric-reducing antioxidant power assay; 1,1-Diphenyl-2-picrylhydrazyl radical scavenging ability assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay, were used. Pitahaya-peel flour had higher values for protein (6.72 g/100 g), ash (11.63 g/100 g), and dietary fiber 56.56 g/100 g) than pitahaya-flesh flour, with values of 6.06, 3.63, and 8.22 g/100 g for protein, ash, and dietary fiber, respectively. In the same way, pitahaya peel showed a higher content of minerals, betalains, and polyphenolic compounds than pitahaya-flesh flour, with potassium (4.43 g/100 g), catechin (25.85 mg/g), quercetin-3-rhamnoside (11.66 mg/g) and myricetrin (12.10 mg/g) as principal compounds found in the peel. Again, pitahaya-peel flour showed better techno-functional and antioxidant properties than pitahaya-flesh flour. The results obtained suggest that the flours obtained from the peel and pulp of pitahaya (H. ocamponis) constitute a potential material to be utilized as an ingredient in the food industry due to the high content of bioactive compounds such as betalains, phenolic acids, and flavonoids, with notable antioxidant capacity.


Asunto(s)
Antioxidantes , Cactaceae , Harina , Frutas , Polifenoles , Cactaceae/química , Antioxidantes/química , Antioxidantes/análisis , Frutas/química , Harina/análisis , Polifenoles/análisis , Polifenoles/química , Betalaínas/química , Betalaínas/análisis , Extractos Vegetales/química
14.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731596

RESUMEN

This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.


Asunto(s)
Beta vulgaris , Lino , Bocadillos , Beta vulgaris/química , Lino/química , Verduras/química , Betalaínas/química , Betalaínas/análisis , Polifenoles/análisis , Polifenoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Dieta Sin Gluten , Fitoquímicos/química , Glútenes/análisis , Glútenes/química
15.
J Sci Food Agric ; 104(9): 5513-5521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38353869

RESUMEN

BACKGROUND: Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential. This work aimed to obtain bioactive extracts from the dried peel of pitaya fruits of the species Selenicereus monacanthus (Lem.), S. costaricensis W. and S. undatus H. using supercritical fluids at different pressures (100, 250 and 400 bar) and ethanol-water 15% v/v or ethanol 100% as co-solvents. The extraction yield, antioxidant activity, colour and total betalain content were evaluated. RESULTS: The extract obtained from S. monacanthus showed the highest extraction yield (49.6 g kg-1), followed by S. costaricensis (27.5 g kg-1) and S. undatus (17.7 g kg-1) at 400 bar and 35 °C using ethanol 15%, v/v. The antioxidant capacity was strongly influenced by pressure, favouring the obtaining of betalain-rich extracts at higher pressures, especially in the species S. costaricensis (0.6 g kg-1) and S. monacanthus (0.3 g kg-1). To improve the extraction of S. undatus (the most cultivated species), the procedure of subsequential extractions was applied. This procedure considerably increased the extraction yield, antioxidant activity and total content of betalains. The use of ethanol 100% provided more bioactive fractions and achieved a good separation of betalains. CONCLUSION: The supercritical extraction method can overcome the challenge of efficiently extracting compounds from pitaya peel, due to the presence of bioactive compounds of great polarity. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Betalaínas , Cactaceae , Cromatografía con Fluido Supercrítico , Frutas , Extractos Vegetales , Betalaínas/química , Betalaínas/aislamiento & purificación , Cactaceae/química , Frutas/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cromatografía con Fluido Supercrítico/métodos , Antioxidantes/química , Antioxidantes/aislamiento & purificación
16.
Plant Foods Hum Nutr ; 79(1): 143-150, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38206481

RESUMEN

Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.


Asunto(s)
Opuntia , Ratones , Animales , Frutas/química , Células 3T3-L1 , Fenoles/análisis , Betalaínas , Extractos Vegetales/farmacología , Triglicéridos , Lípidos
17.
Plant J ; 109(4): 844-855, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34807484

RESUMEN

l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.


Asunto(s)
Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biosíntesis , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complejos Multienzimáticos/clasificación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo
18.
BMC Plant Biol ; 23(1): 28, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36635619

RESUMEN

BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.


Asunto(s)
Arabidopsis , Betalaínas , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
19.
New Phytol ; 239(6): 2265-2276, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243529

RESUMEN

This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitutions are essential for the evolution of l-DOPA 4,5-dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Bean et al. (2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al. (2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana, did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always 10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins, explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018).


Asunto(s)
Betalaínas , Dioxigenasas , Levodopa , Mutación con Ganancia de Función , Sustitución de Aminoácidos , Filogenia , Dioxigenasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Pigmentación
20.
Biotechnol Bioeng ; 120(5): 1357-1365, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702621

RESUMEN

Betalains, which consist of the subgroups betaxanthins and betacyanins, are hydrophilic pigments that have classically been used for food colorants. Owing to their strong antioxidant property, their usefulness for application for therapeutic use is also expected. In addition, as betalains are mainly naturally available from plants of the order Caryophyllales, including beet (Beta vulgaris), metabolic engineering for betalain production in crops such as vegetables, fruits and cereals may provide new food resources useful for healthcare. Here we conducted metabolic engineering of betacyanins in tomato fruits and potato tubers. The transgenic tomato fruits and potato tubers with coexpression of betacyanin biosynthesis genes, CYP76AD1 from B. vulgaris, DOD (DOPA 4,5-dioxygenase) and 5GT (cyclo-DOPA 5-O-glucosyltransferase) from Mirabilis jalapa, under control of suitable specific promoters, possessed dark red tissues with enriched accumulation of betacyanins (betanin and isobetanin). The anti-inflammatory activity of transgenic tomato fruit extract was superior to that of wild-type fruit extract on macrophage RAW264.7 cells stimulated with lipopolysaccharide (LPS), as a result of decreased LPS-stimulated transcript levels of proinflammatory genes. These findings were in accord with the observation that administration of the transgenic tomato fruits ameliorated dextran sulfate sodium (DSS)-induced colitis as well as body weight loss and disease activity index in mice, via suppression of DSS-stimulated transcript levels of pro-inflammatory genes, including Tnf (encoding TNF-alpha), Il6, and Ptgs2 (encoding cyclooxygenae 2). Intriguingly, given the fact that the transgenic potato tuber extract failed to enrich the anti-inflammatory activity of macrophage cells, it is likely that metabolic engineering of betacyanins will be a powerful way of increasing the anti-inflammatory property of ordinary foods such as tomato.


Asunto(s)
Betacianinas , Mirabilis , Animales , Ratones , Betacianinas/análisis , Betacianinas/metabolismo , Verduras/metabolismo , Ingeniería Metabólica , Mirabilis/metabolismo , Lipopolisacáridos , Betalaínas/análisis , Betalaínas/metabolismo , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA