Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Mol Med ; 28(8): e18202, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591872

RESUMEN

Secondary hyperparathyroidism has a significant impact on the overall well-being of the body. Capsiates, known for their antioxidant and metabolic properties, have emerged as a promising alternative treatment for secondary hyperparathyroidism. This study aims to evaluate the effects and mechanisms of capsiates in the treatment of secondary hyperparathyroidism. To achieve our research objectives, we conducted a study on patients' serum and examined changes in metabolic markers using serum metabolomics. We induced secondary hyperparathyroidism in rat through dietary intervention and divided them into four groups. The first group, referred to as the Parathyroid Hormone (PTH) group, received a low-calcium and high-phosphate diet (0.2% calcium, 1.2% phosphorus). The second group served as the control group, receiving a standard phosphate and calcium diet (0.6% calcium, 0.6% phosphorus). The third group, called the capsiates group, consisted of rat from the control group treated with capsiates (intraperitoneal injection of 2 mg/kg capsiates for 2 weeks after 2 weeks of dietary intervention). The fourth group was the capsiates-treated PTH group. Subsequently, we conducted ribose nucleic acid (RNA) sequencing on parathyroid gland cells and evaluated serum thyroxine levels, oxidative stress, expression of proteins associated with vascular neogenesis, measurement of SOD, GSH and 3-nitrotyrosine, micro-CT and histological staining. The serum metabolomic data revealed a significant decrease in capsiate levels in the secondary hyperparathyroidism group. Administration of capsiates to PTH rat resulted in increased calcium levels compared to the PTH group. Additionally, the PTH + Capsiates group showed significantly lower levels of PTH and phosphate compared to the PTH group. The PTH group exhibited a notable increase in the quantity and size of mitochondria compared to the control group. Following capsiates administration to the PTH group, there was a significant reduction in the number of mitochondria and length of microvilli, but an increase in the size of mitochondria compared to the PTH group. Sequencing analysis revealed that vascular endothelial growth factor (VEGF) and Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) play crucial roles in this process. Vascular-related variables and downstream signalling were significantly elevated in hyperthyroidism and were alleviated with capsaicin treatment. Finally, combining capsiates with the PTH group improved bone mineral density, Tb.N, BV.TV, Cs.Th, Tt.Ar, OPG, Ob.TV and Oc.TV, as well as the mineral apposition rate, but significantly decreased Tb.Sp and Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) compared to the PTH group. The findings suggest that capsiates can improve secondary hyperparathyroidism and ameliorated osteoporosis outcomes by inhibiting angiogenesis and reducing oxidative stress.


Asunto(s)
Capsaicina/análogos & derivados , Hiperparatiroidismo Secundario , Resistencia a la Insulina , Humanos , Ratas , Animales , Calcio , Angiogénesis , Factor A de Crecimiento Endotelial Vascular , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hiperparatiroidismo Secundario/etiología , Hormona Paratiroidea , Fósforo , Fosfatos
2.
Am J Physiol Renal Physiol ; 327(3): F476-F488, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991005

RESUMEN

The etiology of interstitial cystitis/bladder pain syndrome (IC/BPS) is unknown but likely multifactorial. IC/BPS symptoms can be exacerbated by psychological stress, but underlying mechanisms remain to be defined. Transient receptor potential vanilloid 1 (TRPV1) channels, expressed on nerve fibers, have been implicated in bladder dysfunction and colonic hypersensitivity with stress in rodents. Histamine/H1R activation of TRPV1+ nerves increases bladder afferent fiber sensitivity to distension. TRPV1 channels are also expressed on mast cells, previously implicated in contributing to IC/BPS etiology and symptoms. We have examined the contribution of TRPV1 and mast cells to bladder dysfunction after repeated variate stress (RVS). RVS increased (P ≤ 0.05) serum and fecal corticosterone expression and induced anxiety-like behavior in wild-type (WT) mice. Intravesical instillation of the selective TRPV1 antagonist capsazepine (CPZ) rescued RVS-induced bladder dysfunction in WT mice. Trpv1 knockout (KO) mice did not increase voiding frequency with RVS and did not exhibit increased serum corticosterone expression despite exhibiting anxiety-like behavior. Mast cell-deficient mice (B6.Cg-Kitw-sh) failed to demonstrate RVS-induced increased voiding frequency or serum corticosterone expression, whereas control (no stress) mast cell-deficient mice had similar functional bladder capacity to WT mice. TRPV1 protein expression was significantly increased in the rostral lumbar (L1-L2) spinal cord and dorsal root ganglia (DRG) in WT mice exposed to RVS, but no changes were observed in lumbosacral (L6-S1) spinal segments or DRG. These studies demonstrated TRPV1 and mast cell involvement in RVS-induced increased voiding frequency and suggest that TRPV1 and mast cells may be useful targets to mitigate stress-induced urinary bladder dysfunction.NEW & NOTEWORTHY Using pharmacological tools and transgenic mice in a repeated variate stress (RVS) model in female mice, we demonstrate that transient receptor potential vanilloid 1 (TRPV1) and mast cells contribute to the increased voiding frequency observed following RVS. TRPV1 and mast cells should continue to be considered as targets to improve bladder function in stress-induced bladder dysfunction.


Asunto(s)
Corticosterona , Mastocitos , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Psicológico , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Mastocitos/metabolismo , Femenino , Vejiga Urinaria/metabolismo , Vejiga Urinaria/inervación , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Corticosterona/sangre , Modelos Animales de Enfermedad , Cistitis Intersticial/metabolismo , Cistitis Intersticial/fisiopatología , Cistitis Intersticial/patología , Cistitis Intersticial/genética , Ratones , Micción , Capsaicina/farmacología , Capsaicina/análogos & derivados , Conducta Animal , Ansiedad/metabolismo
3.
Mol Pain ; 20: 17448069241233744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323375

RESUMEN

Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.


Asunto(s)
Acetanilidas , Capsaicina/análogos & derivados , Óxido de Magnesio , Purinas , Piruvaldehído , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Ratas Sprague-Dawley , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Asta Dorsal de la Médula Espinal/metabolismo , Células del Asta Posterior/metabolismo , Dolor/metabolismo , Transmisión Sináptica/fisiología
4.
Mol Pain ; 20: 17448069241272149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39079948

RESUMEN

Cadaverine is an endogenous metabolite produced by the gut microbiome with various activity in physiological and pathological conditions. However, whether cadaverine regulates pain or itch remains unclear. In this study, we first found that cadaverine may bind to histamine 4 receptor (H4R) with higher docking energy score using molecular docking simulations, suggesting cadaverine may act as an endogenous ligand for H4R. We subsequently found intradermal injection of cadaverine into the nape or cheek of mice induces a dose-dependent scratching response in mice, which was suppressed by a selective H4R antagonist JNJ-7777120, transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine and PLC inhibitor U73122, but not H1R antagonist or TRPA1 antagonist or TRPV4 antagonist. Consistently, cadaverine-induced itch was abolished in Trpv1-/- but not Trpa1-/- mice. Pharmacological analysis indicated that mast cells and opioid receptors were also involved in cadaverine-induced itch in mice. scRNA-Seq data analysis showed that H4R and TRPV1 are mainly co-expressed on NP2, NP3 and PEP1 DRG neurons. Calcium imaging analysis showed that cadaverine perfusion enhanced calcium influx in the dissociated dorsal root ganglion (DRG) neurons, which was suppressed by JNJ-7777120 and capsazepine, as well as in the DRG neurons from Trpv1-/- mice. Patch-clamp recordings found that cadaverine perfusion significantly increased the excitability of small diameter DRG neurons, and JNJ-7777120 abolished this effect, indicating involvement of H4R. Together, these results provide evidences that cadaverine is a novel endogenous pruritogens, which activates H4R/TRPV1 signaling pathways in the primary sensory neurons.


Asunto(s)
Cadaverina , Ganglios Espinales , Ratones Endogámicos C57BL , Prurito , Canales Catiónicos TRPV , Animales , Prurito/metabolismo , Prurito/inducido químicamente , Canales Catiónicos TRPV/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Masculino , Cadaverina/análogos & derivados , Cadaverina/farmacología , Cadaverina/metabolismo , Ratones , Ratones Noqueados , Humanos , Mastocitos/metabolismo , Mastocitos/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Capsaicina/análogos & derivados
5.
Exp Eye Res ; 244: 109950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815789

RESUMEN

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Asunto(s)
Capsaicina , Supervivencia Celular , Epitelio Corneal , Lipopolisacáridos , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Capsaicina/análogos & derivados , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Antioxidantes/farmacología , Células Cultivadas , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/patología , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
6.
Addict Biol ; 29(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963015

RESUMEN

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Asunto(s)
Ansiedad , Endocannabinoides , Epigénesis Genética , Memoria a Corto Plazo , Nicotina , Estrés Psicológico , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/efectos de los fármacos , Nicotina/farmacología , Ratones , Memoria a Corto Plazo/efectos de los fármacos , Endocannabinoides/metabolismo , Masculino , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Capsaicina/farmacología , Capsaicina/análogos & derivados , Modelos Animales de Enfermedad , Rimonabant/farmacología , Agonistas Nicotínicos/farmacología , Piperidinas/farmacología
7.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892000

RESUMEN

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Asunto(s)
Ganglios Espinales , Neuralgia , Paclitaxel , Ratas Sprague-Dawley , Canales Catiónicos TRPM , Canales Catiónicos TRPV , Animales , Paclitaxel/efectos adversos , Paclitaxel/farmacología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Capsaicina/farmacología , Capsaicina/análogos & derivados , Neuronas/metabolismo , Neuronas/efectos de los fármacos
8.
Molecules ; 29(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38930798

RESUMEN

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Asunto(s)
Capsaicina , Diclofenaco , Salicilatos , Piel , Capsaicina/análisis , Capsaicina/análogos & derivados , Diclofenaco/análisis , Cromatografía Líquida de Alta Presión/métodos , Salicilatos/análisis , Piel/química , Animales , Conejos , Cromatografía de Fase Inversa/métodos , Dietilaminas/química
9.
J Sci Food Agric ; 104(11): 6799-6808, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38568724

RESUMEN

BACKGROUND: Myoglobin (Mb) in duck meat is commonly over-oxidized when heated at high temperatures, which may worsen the color of the meat. Enhancing the oxidative stability of Mb is essential for improving the color of duck meat. Capsaicin and dihydrocapsaicin (CA-DI) in chili exhibit antioxidant properties. This study investigated the effects of CA-DI on the structure and oxidative damage of Mb by fluorescence spectroscopy, differential scanning calorimetry analysis and particle size in duck meat during heat treatment. RESULTS: When the ratio of CA-DI to Mb was 10:1 g kg-1 and heat-treated for 36 min, oxymyoglobin significantly increased, and metmyoglobin significantly decreased compared with the control group (P < 0.05). In parallel, the carbonyl content of Mb in the CA-DI group decreased by 43.40 ± 0.10%, the sulfhydryl content increased by 188 ± 0.21%, and the free radical scavenging activity of Mb was significantly enhanced (P < 0.05). Moreover, the addition of CA-DI resulted in a significant decrease in the particle size of the Mb surface (P < 0.05). When the ratio of CA-DI to Mb was 10:1 g kg-1, CA-DI enhanced the thermal stability and significantly increased the thermal denaturation temperature of Mb. The molecular docking results indicated that hydrophobic interactions and hydrogen bonds were involved in the binding of CA-DI to Mb. CONCLUSION: CA-DI could combine with Mb and improve the oxidation stability of Mb in duck meat. This suggested that CA-DI could be a potential natural antioxidant that improves the color of meat products. © 2024 Society of Chemical Industry.


Asunto(s)
Capsaicina , Patos , Carne , Mioglobina , Oxidación-Reducción , Animales , Mioglobina/química , Capsaicina/análogos & derivados , Capsaicina/química , Carne/análisis , Capsicum/química , Calor , Extractos Vegetales/química , Antioxidantes/química , Estabilidad Proteica
10.
ACS Chem Biol ; 19(7): 1466-1473, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38904446

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is important for nociception and inflammatory pain and is activated by a variety of nociceptive stimuli─including lipids such as capsaicin (CAP) and endocannabinoids. TRPV1's role in physiological systems is often studied by activating it with externally perfused ligands; however, this approach is plagued by poor spatiotemporal resolution. Lipid agonists are insoluble in physiological buffers and can permeate membranes to accumulate nonselectively inside cells, where they can have off-target effects. To increase the spatiotemporal precision with which we can activate lipids on cells and tissues, we previously developed optically cleavable targeted (OCT) ligands, which use protein tags (SNAP-tags) to localize a photocaged ligand on a target cellular membrane. After enrichment, the active ligand is released on a flash of light to activate nearby receptors. In our previous work, we developed an OCT-ligand to control a cannabinoid-sensitive GPCR. Here, we expand the scope of OCT-ligand technology to target TRPV1 ion channels. We synthesize a probe, OCT-CAP, that tethers to membrane-bound SNAP-tags and releases a TRPV1 agonist when triggered by UV-A irradiation. Using Ca2+ imaging and electrophysiology in HEK293T cells expressing TRPV1, we demonstrate that OCT-CAP uncaging activates TRPV1 with superior spatiotemporal precision when compared to standard diffusible ligands or photocages. This study is the first example of an OCT-ligand designed to manipulate an ion-channel target. We anticipate that these tools will find many applications in controlling lipid signaling pathways in various cells and tissues.


Asunto(s)
Capsaicina , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/agonistas , Humanos , Células HEK293 , Capsaicina/farmacología , Capsaicina/análogos & derivados , Ligandos , Calcio/metabolismo
11.
Shock ; 61(2): 294-303, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150372

RESUMEN

ABSTRACT: We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.


Asunto(s)
Benzamidas , Capsaicina/análogos & derivados , Carbamatos , Endocannabinoides , Choque Hemorrágico , Animales , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Choque Hemorrágico/metabolismo , Inhibidores Enzimáticos , Vasopresinas/farmacología
12.
Forensic Sci Int ; 362: 112169, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079453

RESUMEN

Pepper sprays of the OC type constitute the majority of self-defense sprays available on the market. The active ingredient in these preparations is pepper extract: Oleoresin Capsicum, which contains capsaicinoids - natural compounds with irritant properties. Preparations from OC pepper sprays can be distinguished based on differences in the quantitative ratios of four main capsaicinoids: capsaicin, dihydrocapsaicin, nordihydrocapsaicin, and nonivamide. This raises the question whether information on the quantitative ratios of capsaicinoids can also provide answers to questions regarding comparisons of traces of OC preparations, such as whether traces revealed on the clothing of the victim could originate from an OC spray secured from the suspect, or whether traces on the clothing of the suspect and the victim could come from the same pepper spray. Such comparisons would be viable only if the capsaicinoid profile remained unchanged during evidence storage and as a result of solvent extraction from the tested material. The aim of the presented research was to determine if this is indeed the case. Model aging experiments were conducted to examine whether the capsaicinoid profile in traces of OC preparations changed over time and whether solvent extraction affected this profile. Samples of five different OC preparations were applied to cotton swabs, which, after the evaporation of volatile solvents, were placed in three types of packaging with varying levels of tightness and transparency (tight amber vials, polyethylene bags, paper envelopes). These prepared samples underwent solvent extraction with methanol and analysis using gas chromatography - mass spectrometry, after 28, 84, 147, 196, 252, and 301 days from preparation. The likelihood ratio (LR) was applied as a statistical tool to investigate the data obtained. The LR model was computed using the three variables based on the relative content of nordihydrocapsaicin, nonivamide, and dihydrocapsaicin. The cotton swabs used in the experiments served as a model for both the swabs used by the police for securing liquid evidence and the cotton clothing of individuals sprayed with OC pepper sprays. The findings of the conducted studies suggest that the quantitative relationships of capsaicinoids indeed change over time, both in preparations stored in original containers and in traces of these preparations present on clothing. For traces of OC preparations secured on swabs or present on clothing, these changes are more significant the longer the sample is stored and the less airtight the packaging used.


Asunto(s)
Capsaicina , Cromatografía de Gases y Espectrometría de Masas , Capsaicina/análisis , Capsaicina/análogos & derivados , Humanos , Factores de Tiempo , Manejo de Especímenes , Extractos Vegetales/química , Extractos Vegetales/análisis , Capsicum/química , Aerosoles/análisis , Vestuario
13.
Nutr Res ; 122: 33-43, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141553

RESUMEN

Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).


Asunto(s)
Capsaicina/análogos & derivados , Capsicum , Entrenamiento de Fuerza , Masculino , Humanos , Adulto Joven , Adulto , Leptina/metabolismo , Suplementos Dietéticos , Apetito , Adiponectina , Tejido Adiposo/metabolismo , Composición Corporal , Fuerza Muscular , Método Doble Ciego , Alcanfor/metabolismo , Alcanfor/farmacología , Mentol/metabolismo , Mentol/farmacología , Extractos Vegetales/farmacología , Músculo Esquelético
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124238, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38593543

RESUMEN

A simple smartphone-based digital image colorimetry was proposed for the determination of total capsaicinoid content and the assessment of chili pepper pungency. The biobased solvent D-limonene was used for the first time to isolate analytes. Capsaicinoids were efficiently separated from chili pepper by solid-liquid extraction with D-limonene followed by partitioning of the analytes into the ammonium hydroxide solution to eliminate the matrix interference effect. For colorimetric detection of total capsaicinoid content, a selective chromogenic reaction was performed using Gibbs reagent (2,6-dichloroquinone-4-chloroimide). Measurements were performed using a smartphone-based setup and included image analysis with the program ImageJ. The limit of detection of the proposed procedure was 0.15 mg g-1. The intra-day repeatability did not exceed 10.0 %. The inter-day repeatability was less than 16.5 %. The comparison of the smartphone-based procedure with high-performance liquid chromatography showed satisfactory results.


Asunto(s)
Capsaicina , Capsicum , Colorimetría , Extractos Vegetales , Teléfono Inteligente , Capsicum/química , Colorimetría/métodos , Capsaicina/análisis , Capsaicina/análogos & derivados , Extractos Vegetales/química , Extractos Vegetales/análisis , Límite de Detección , Reproducibilidad de los Resultados
15.
J Control Release ; 371: 324-337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823584

RESUMEN

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Asunto(s)
Capsaicina , Bloqueo Nervioso , Profármacos , Ratas Sprague-Dawley , Nervio Ciático , Profármacos/administración & dosificación , Animales , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Masculino , Nervio Ciático/efectos de los fármacos , Bloqueo Nervioso/métodos , Ratas , Analgésicos/administración & dosificación , Analgésicos/farmacología
16.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554815

RESUMEN

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Capsaicina/análogos & derivados , Discinesia Inducida por Medicamentos , Levodopa , Ratas , Ratones , Animales , Levodopa/uso terapéutico , Antiparkinsonianos/farmacología , Ratas Sprague-Dawley , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Ratones Endogámicos C57BL , Cuerpo Estriado , Oxidopamina/farmacología , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad
17.
BMC Complement Med Ther ; 24(1): 96, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383414

RESUMEN

DNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs. Complete inhibition of Topo II was observed for samples TMS, HR, and HMR. Extracts J and SP had the lowest capsaicin and dihydrocapsaicin content compared to other peppers. HR, HMR, TMS, J, S, HRS, BJ, JR extracts showed the anticancer effect, examined by MTS and xCell assay on the in vitro culture of human colon carcinoma cell line HCT116.


Asunto(s)
Antineoplásicos , Capsaicina/análogos & derivados , Capsicum , Humanos , Capsaicina/farmacología , Capsicum/genética , Capsicum/metabolismo , Antineoplásicos/farmacología , ADN
18.
Toxicol In Vitro ; 98: 105824, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614139

RESUMEN

The TRPV1 receptor, which is known to contribute significantly to pain perception, has recently been identified as a useful tool for predicting eye stinging potential in cosmetics. In this study, HEK-293 cells with high TRPV1 expression were utilized to evaluate calcium influx related to receptor activation triggered by chemicals and cosmetic formulations. The cells were exposed to increasing concentrations of substances to cause or not some aggression to the eye, and TRPV1 activity was assessed by measuring intracellular FURA-2 AM fluorescence signal. To confirm TRPV1 channel activation, capsazepine, a capsaicin antagonist, was employed in addition to using capsaicin as a positive control. The study's results indicate that this novel model can identify compounds known to cause some aggression to the eye, such as stinging, considering a cut-off value of 60% of Ca2+ influx exposed to the lowest evaluated concentration (0.00032%). When applied to the cosmetic baby formulation, although the presented model exhibited higher sensitivity by classifying as stinging formulations that had previously undergone clinical testing and were deemed non-stinging, the assay could serve as a valuable in vitro tool for predicting human eye stinging sensation and can be used as a tier 1 in an integrated testing strategy.


Asunto(s)
Calcio , Cosméticos , Canales Catiónicos TRPV , Humanos , Cosméticos/toxicidad , Células HEK293 , Canales Catiónicos TRPV/metabolismo , Calcio/metabolismo , Ojo/efectos de los fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacología , Alternativas a las Pruebas en Animales
19.
Brain Res ; 1839: 149008, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761846

RESUMEN

A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 µM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.


Asunto(s)
Capsaicina , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/efectos de los fármacos , Capsaicina/farmacología , Capsaicina/análogos & derivados , Animales , Ratas , Línea Celular Tumoral , Técnicas de Placa-Clamp , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos
20.
Environ Pollut ; 353: 124127, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759746

RESUMEN

Allergic asthma is a chronic inflammatory airway disease with a high mortality rate and a rapidly increasing prevalence in recent decades that is closely linked to environmental change. Previous research found that high humidity (HH) and the traffic-related air pollutant NO2 both aggregated allergic asthma. Their combined effect and mechanisms on asthma exacerbation, however, are unknown. Our study aims to toxicologically clarify the role of HH (90%) and NO2 (5 ppm) on allergic asthma. Ninety male Balb/c mice were randomly assigned to one of six groups (n = 15 in each): saline control, ovalbumin (OVA)-sensitized, OVA + HH, OVA + NO2, OVA + HH + NO2, and OVA + HH + NO2+Capsazepine (CZP). After 38 days of treatment, the airway function, pathological changes in lung tissue, blood inflammatory cells, and oxidative stress and inflammatory biomarkers were comprehensively assessed. Co-exposure to HH and NO2 exacerbated histopathological changes and airway hyperresponsiveness, increased IgE, oxidative stress markers malonaldehyde (MDA) and allergic asthma-related inflammation markers (IL-1ß, TNF-α and IL-17), and upregulated the expressions of the transient receptor potential (TRP) ion channels (TRPA1, TRPV1 and TRPV4). Our findings show that co-exposure to HH and NO2 disrupted the Th1/Th2 immune balance, promoting allergic airway inflammation and asthma susceptibility, and increasing TRPV1 expression, whereas CZP reduced TRPV1 expression and alleviated allergic asthma symptoms. Thus, therapeutic treatments that target the TRPV1 ion channel have the potential to effectively manage allergic asthma.


Asunto(s)
Contaminantes Atmosféricos , Asma , Humedad , Pulmón , Ratones Endogámicos BALB C , Dióxido de Nitrógeno , Estrés Oxidativo , Canales Catiónicos TRPV , Animales , Asma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratones , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Contaminantes Atmosféricos/toxicidad , Dióxido de Nitrógeno/toxicidad , Inflamación/metabolismo , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Inmunoglobulina E , Capsaicina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA