Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.423
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 34: 111-136, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30296391

RESUMEN

The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.


Asunto(s)
Caveolas/metabolismo , Membrana Celular/genética , Vesículas Transportadoras/genética , Caveolas/química , Caveolas/patología , Membrana Celular/química , Endocitosis/genética , Humanos , Transducción de Señal/genética , Estrés Mecánico , Relación Estructura-Actividad , Vesículas Transportadoras/química
3.
Cell ; 150(4): 752-63, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901807

RESUMEN

Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest.


Asunto(s)
Caveolas/metabolismo , Caveolas/ultraestructura , Caveolinas/metabolismo , Escherichia coli , Mamíferos/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos
4.
Nature ; 579(7797): 106-110, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32076269

RESUMEN

Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand1. Neurovascular coupling is the basis for functional brain imaging2, and impaired neurovascular coupling is implicated in neurodegeneration1. The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow1. Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.


Asunto(s)
Arteriolas/citología , Arteriolas/metabolismo , Caveolas/metabolismo , Sistema Nervioso Central/citología , Acoplamiento Neurovascular , Animales , Corteza Cerebral/citología , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Vibrisas/fisiología
5.
Annu Rev Biochem ; 79: 803-33, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20196649

RESUMEN

Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.


Asunto(s)
Endocitosis , Internalización del Virus , Animales , Caveolas/metabolismo , Clatrina/metabolismo , Microdominios de Membrana/metabolismo , Fagocitosis , Pinocitosis
6.
J Virol ; 98(6): e0170523, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38742902

RESUMEN

Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE: Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.


Asunto(s)
Endocitosis , ARN Largo no Codificante , Internalización del Virus , Infección por el Virus Zika , Virus Zika , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Virus Zika/genética , Virus Zika/fisiología , Humanos , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Caveolas/metabolismo , Animales , Replicación Viral , Regulación hacia Arriba , Virus del Dengue/fisiología , Virus del Dengue/genética , Chlorocebus aethiops , Células HEK293 , Células Vero , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética
7.
Nat Rev Mol Cell Biol ; 14(2): 98-112, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23340574

RESUMEN

Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.


Asunto(s)
Caveolas/fisiología , Membrana Celular/química , Membrana Celular/metabolismo , Animales , Caveolas/química , Caveolas/metabolismo , Caveolinas/química , Caveolinas/genética , Caveolinas/metabolismo , Caveolinas/fisiología , Citoprotección/genética , Citoprotección/fisiología , Endocitosis/genética , Endocitosis/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Modelos Biológicos , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Proc Natl Acad Sci U S A ; 119(16): e2117435119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412911

RESUMEN

Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation­transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.


Asunto(s)
Canales de Calcio Tipo L , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Caveolas , Transcripción Genética , Remodelación Vascular , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Caveolas/metabolismo , Caveolina 1/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Acoplamiento Excitación-Contracción , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Neuronas/metabolismo , Fosforilación
9.
Annu Rev Biochem ; 78: 857-902, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19317650

RESUMEN

Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.


Asunto(s)
Endocitosis , Animales , Caveolas/metabolismo , Clatrina/metabolismo , Humanos , Fagocitosis , Pinocitosis , Transporte de Proteínas
10.
J Biol Chem ; 299(4): 104574, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870682

RESUMEN

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Asunto(s)
Caveolina 1 , Caveolinas , Enfermedad , Humanos , Caveolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Subunidades de Proteína/metabolismo , Enfermedad/genética
11.
J Virol ; 97(4): e0021023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975780

RESUMEN

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Asunto(s)
Alphacoronavirus , Caveolas , Clatrina , Pinocitosis , Internalización del Virus , Proteínas de Unión al GTP rab , Alphacoronavirus/fisiología , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Infecciones por Coronavirus/metabolismo , Concentración de Iones de Hidrógeno , Dinaminas/metabolismo , Caveolas/metabolismo , Colesterol/metabolismo , Clatrina/metabolismo , Pinocitosis/fisiología , Células Vero , Chlorocebus aethiops , Animales
12.
Biochem Soc Trans ; 52(2): 947-959, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38526159

RESUMEN

Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.


Asunto(s)
Caveolina 1 , Transducción de Señal , Animales , Humanos , Caveolas/metabolismo , Caveolina 1/metabolismo , Caveolina 1/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Óxido Nítrico Sintasa de Tipo III/metabolismo , Dominios Proteicos
13.
Pharmacol Res ; 201: 107096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320736

RESUMEN

The uncontrolled bacterial infection-induced cytokine storm and sequential immunosuppression are commonly observed in septic patients, which indicates that the activation of phagocytic cells and the efficient and timely elimination of bacteria are crucial for combating bacterial infections. However, the role of dysregulated immune cells and their disrupted function in sepsis remains unclear. Here, we found that macrophages exhibited the impaired endocytosis capabilities in sepsis by Single-cell RNA sequencing and bulk RNA sequencing. Caveolae protein Caveolin-1 (Cav-1) of macrophages was inactivated by SHP2 rapidly during Escherichia coli (E.coli) infection. Allosteric inhibitor of SHP2 effectively maintains Cav-1 phosphorylation to enhance macrophage to endocytose and eliminate bacteria. Additionally, TLR4 endocytosis of macrophage was also enhanced upon E.coli infection by SHP099, inducing an increased and rapidly resolved inflammatory response. In vivo, pretreatment or posttreatment with inhibitor of SHP2 significantly reduced the bacterial burden in organs and mortality of mice subjected E.coli infection or CLP-induced sepsis. The cotreatment of inhibitor of SHP2 with an antibiotic conferred complete protection against mortality in mice. Our findings suggest that Cav-1-mediated endocytosis and bacterial elimination may play a critical role in the pathogenesis of sepsis, highlighting inhibitor of SHP2 as a potential therapeutic agent for sepsis.


Asunto(s)
Caveolas , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Sepsis , Animales , Humanos , Ratones , Bacterias , Caveolas/metabolismo , Endocitosis , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Macrófagos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879616

RESUMEN

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Asunto(s)
Caveolas/metabolismo , Endotelio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Hipertensión Arterial Pulmonar/etiología , Canales Catiónicos TRPV/metabolismo , Animales , Presión Arterial , Humanos , Ratones Noqueados , NADPH Oxidasa 1/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína Quinasa C/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/genética
15.
J Mol Cell Cardiol ; 177: 38-49, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842733

RESUMEN

RATIONALE: Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE: To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS: Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION: We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.


Asunto(s)
Caveolas , Síndrome de QT Prolongado , Animales , Humanos , Ratones , Caveolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Canales Iónicos/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo
16.
J Mol Cell Cardiol ; 184: 75-87, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805125

RESUMEN

Caveolae are tiny invaginations in the sarcolemma that buffer extra membrane and contribute to mechanical regulation of cellular function. While the role of caveolae in membrane mechanosensation has been studied predominantly in non-cardiomyocyte cells, caveolae contribution to cardiac mechanotransduction remains elusive. Here, we studied the role of caveolae in the regulation of Ca2+ signaling in atrial cardiomyocytes. In Langendorff-perfused mouse hearts, atrial pressure/volume overload stretched atrial myocytes and decreased caveolae density. In isolated cells, caveolae were disrupted through hypotonic challenge that induced a temporal (<10 min) augmentation of Ca2+ transients and caused a rise in Ca2+ spark activity. Similar changes in Ca2+ signaling were observed after chemical (methyl-ß-cyclodextrin) and genetic ablation of caveolae in cardiac-specific conditional caveolin-3 knock-out mice. Acute disruption of caveolae, both mechanical and chemical, led to the elevation of cAMP level in the cell interior, and cAMP-mediated augmentation of protein kinase A (PKA)-phosphorylated ryanodine receptors (at Ser2030 and Ser2808). Caveolae-mediated stimulatory effects on Ca2+ signaling were abolished via inhibition of cAMP production by adenyl cyclase antagonists MDL12330 and SQ22536, or reduction of PKA activity by H-89. A compartmentalized mathematical model of mouse atrial myocytes linked the observed changes to a microdomain-specific decrease in phosphodiesterase activity, which disrupted cAMP signaling and augmented PKA activity. Our findings add a new dimension to cardiac mechanobiology and highlight caveolae-associated cAMP/PKA-mediated phosphorylation of Ca2+ handling proteins as a novel component of mechano-chemical feedback in atrial myocytes.


Asunto(s)
Fibrilación Atrial , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Caveolas/metabolismo , Mecanotransducción Celular , Fibrilación Atrial/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/fisiología
17.
J Biol Chem ; 298(6): 102005, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513070

RESUMEN

Caveolae are invaginated membrane domains that provide mechanical strength to cells in addition to being focal points for the localization of signaling molecules. Caveolae are formed through the aggregation of caveolin-1 or -3 (Cav1/3), membrane proteins that assemble into multifunctional complexes with the help of caveola-associated protein cavin-1. In addition to its role in the formation of caveolae, cavin-1, also called polymerase I and transcript release factor, is further known to promote ribosomal RNA transcription in the nucleus. However, the mechanistic link between these functions is not clear. Here, we found that deforming caveolae by subjecting cells to mild osmotic stress (150-300 mOsm) changes levels of GAPDH, Hsp90, and Ras only when Cav1/cavin-1 levels are reduced, suggesting a link between caveola deformation and global protein expression. We show that this link may be due to relocalization of cavin-1 to the nucleus upon caveola deformation. Cavin-1 relocalization is also seen when Cav1-Gαq contacts change upon stimulation. Furthermore, Cav1 and cavin-1 levels have been shown to have profound effects on cytosolic RNA levels, which in turn impact the ability of cells to form stress granules and RNA-processing bodies (p-bodies) which sequester and degrade mRNAs, respectively. Our studies here using a cavin-1-knockout cell line indicate adaptive changes in cytosolic RNA levels but a reduced ability to form stress granules. Taken together, our findings suggest that caveolae, through release of cavin-1, communicate extracellular cues to the cell interior to impact transcriptional and translational.


Asunto(s)
Caveolas , Caveolina 1 , Biosíntesis de Proteínas , Proteínas de Unión al ARN , Transcripción Genética , Caveolas/metabolismo , Caveolas/patología , Caveolina 1/genética , Caveolina 1/metabolismo , Línea Celular , Técnicas de Inactivación de Genes , Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
18.
Biochem Biophys Res Commun ; 675: 177-183, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506534

RESUMEN

Endothelial fenestrae are transcellular pores separated by diaphragms formed by plasmalemma vesicle-associated proteins (PLVAP) and function as channels for peptide hormones and other substances. Caveola, a key regulator of clathrin-independent endocytosis, may be involved in the invagination and fusion of plasma membranes, which are essential for fenestra formation. In this study, we first found that caveolin-1 and -2, the major components of caveolae, was localized in fenestrated endothelial cells in the anterior lobe of the rat pituitary by immunohistochemistry. As we also observed caveolae in the endothelial cells of the anterior lobe of the rat pituitary by transmission electron microscopy, we studied the relationship between the caveolae-mediated endocytosis pathway and fenestrae structure in cultured endothelial cells isolated from the anterior lobe of the rat pituitary (CECAL) by immunofluorescence staining and scanning electron microscopy. The inhibition of caveolae-mediated endocytosis by genistein enlarged the PLVAP-positive oval-shaped structure that represented the sieve plate and induced the formation of a doughnut-shaped bulge around the fenestra in CECAL. In contrast, the acceleration of caveolae-mediated endocytosis by okadaic acid induced the diffusion of PLVAP-positive signals in the cytoplasm and reduced the number of fenestrae in CECAL. These results indicate that the caveolae-mediated endocytosis pathway is involved in the fenestra homeostasis in the fenestrated endothelial cells of the rat pituitary.


Asunto(s)
Caveolas , Células Endoteliales , Ratas , Animales , Caveolas/metabolismo , Células Endoteliales/metabolismo , Caveolina 1/metabolismo , Endotelio/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Homeostasis
19.
J Membr Biol ; 256(1): 79-90, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35751654

RESUMEN

Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Caveolas , Animales , Humanos , Femenino , Caveolas/metabolismo , Insulina/farmacología , Insulina/metabolismo , Células MCF-7 , Factor de Transcripción STAT5/metabolismo , Neoplasias de la Mama/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Fosforilación , Tirosina/metabolismo , ADN/metabolismo , Mamíferos/metabolismo
20.
J Virol ; 96(24): e0144622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472440

RESUMEN

Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.


Asunto(s)
Caveolina 1 , Dinaminas , Picornaviridae , Internalización del Virus , Proteínas de Unión al GTP rab5 , Animales , Caveolas/metabolismo , Caveolina 1/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis , Picornaviridae/fisiología , ARN Interferente Pequeño/genética , Porcinos , Enfermedad Vesicular Porcina , Proteínas de Unión al GTP rab5/metabolismo , Pinocitosis , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA