Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 16(1): 61, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859088

RESUMEN

BACKGROUND: Hydrogen peroxide (H2O2) is generated as a by-product of metabolic reactions during oxygen use by aerobic organisms, and can be toxic or participate in signaling processes. Cells, therefore, need to be able to sense and respond to H2O2 in an appropriate manner. This is often accomplished through thiol switches: Cysteine residues in proteins that can act as sensors, and which are both scarce and finely tuned. Bacteria and eukaryotes use different types of such sensors-either a one-component (OxyR) or two-component (Pap1-Tpx1) redox relay, respectively. However, the biological significance of these two different signaling modes is not fully understood, and the concentrations and peroxides driving those types of redox cascades have not been determined, nor the intracellular H2O2 levels linked to toxicity. Here we elucidate the characteristics, rates, and dynamic ranges of both systems. RESULTS: By comparing the activation of both systems in fission yeast, and applying mathematical equations to the experimental data, we estimate the toxic threshold of intracellular H2O2 able to halt aerobic growth, and the temporal gradients of extracellular to intracellular peroxides. By calculating both the oxidation rates of OxyR and Tpx1 by peroxides, and their reduction rates by the cellular redoxin systems, we propose that, while Tpx1 is a sensor and an efficient H2O2 scavenger because it displays fast oxidation and reduction rates, OxyR is strictly a H2O2 sensor, since its reduction kinetics are significantly slower than its oxidation by peroxides, and therefore, it remains oxidized long enough to execute its transcriptional role. We also show that these two paradigmatic H2O2-sensing models are biologically similar at pre-toxic peroxide levels, but display strikingly different activation behaviors at toxic doses. CONCLUSIONS: Both Tpx1 and OxyR contain thiol switches, with very high reactivity towards peroxides. Nevertheless, the fast reduction of Tpx1 defines it as a scavenger, and this efficient recycling dramatically changes the Tpx1-Pap1 response to H2O2 and connects H2O2 sensing to the redox state of the cell. In contrast, OxyR is a true H2O2 sensor but not a scavenger, being partially insulated from the cellular electron donor capacity.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cisteína/fisiología , Peróxido de Hidrógeno/toxicidad , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576974

RESUMEN

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Asunto(s)
Cisteína/fisiología , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Células HEK293 , Humanos , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Compuestos de Sulfhidrilo/química
3.
Nitric Oxide ; 70: 51-58, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28847570

RESUMEN

The aim of this study was to investigate the possible interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) in the mouse corpus cavernosum (CC). l-cysteine (endogenous H2S substrate; 10-6-10-3 M), sodium hydrogen sulfide (NaHS; exogenous H2S; 10-6-10-3 M) and acetylcholine (10-9-10-4 M) produced concentration-dependent relaxation in isolated mouse CC tissues. Relaxations to endogenous and exogenous H2S were reduced by non-selective mAChR antagonist atropine (5 × 10-5 M), selective M1 mAChR antagonist pirenzepine (5 × 10-5 M) and selective M3 mAChR antagonist 4-DAMP (10-7 M) but not by selective M2 mAChR antagonist AF-DX 116 (10-6 M). Also, acetylcholine-induced relaxations were reduced by atropine, pirenzepine, 4-DAMP and AF-DX 116, confirming the selective effects of mAChR antagonists. Furthermore, acetylcholine-induced relaxations were attenuated by cystathionine-gamma-lyase (CSE) inhibitor d,l-propargylglycine (PAG, 10-2 M) and cystathionine-ß-synthase inhibitor (CBS) aminooxyacetic acid (AOAA, 10-3 M). l-nitroarginine, nitric oxide synthase inhibitor, augmented the inhibitory effects of mAChR antagonists and H2S enzyme inhibitors on acetylcholine-induced relaxations. In addition, the existence and localization of CSE, CBS and 3-MST were demonstrated in mouse CC. Furthermore, tissue acetylcholine release was significantly increased by l-cysteine but not by exogenous H2S. The increase in acetylcholine level was completely inhibited by AOAA and PAG. These results suggest that M1 and M3 mAChRs contributes to relaxant effect mediated by endogenous H2S but at same time l-cysteine triggers acetylcholine release from cavernosal tissue. Also, the role of NO in the interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) could not be excluded.


Asunto(s)
Cisteína/fisiología , Sulfuro de Hidrógeno/metabolismo , Pene/fisiología , Receptores Muscarínicos/fisiología , Acetilcolina/metabolismo , Alquinos/farmacología , Ácido Aminooxiacético/farmacología , Animales , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Masculino , Ratones , Antagonistas Muscarínicos/farmacología , Relajación Muscular/fisiología , Nitroarginina/farmacología , Pene/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal/fisiología , Sulfurtransferasas/metabolismo
4.
Biochim Biophys Acta ; 1854(5): 485-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25731082

RESUMEN

Protein disulfide isomerase-P5 (P5) is thought to have important functions as an oxidoreductase, however, molecular functions of P5 have not been fully elucidated. We have reported that P5 has insulin reductase activity and inhibits lysozyme refolding by formation of lysozyme multimers with hypermolecular mass inactivated by intermolecular disulfides (hyLYS) in oxidative refolding of reduced denatured lysozyme. To explore the role of each domain of P5, we investigated the effects of domain deletion and Cys-Ala mutants of P5 on insulin reduction and the oxidative refolding of the lysozyme. The mutants of catalytic cysteines, C36/39A, C171/174A, and C36/39/171/174A inhibited the lysozyme refolding almost similarly to P5, and even b domain without catalytic cysteines showed moderate inhibitory effect, suggesting that the b domain played a key role in the inhibition. Western blotting analysis of the refolding products indicated that the catalytic cysteines in both the a and a' domains cross-linked lysozyme comparably to form hyLYS resistant to trypsin, in which b domain was suggested to capture lysozyme for the significant sulfhydryl oxidation. The mutant of the conserved cysteines in b domain, C272/278A, did not form hyLYS, however, showed predominant reductase activity, implying that P5 functioned as a potent sulfhydryl oxidase and a predominant reductase depending on the circumstance around C272/278. These results provide new insight into the molecular basis of P5 function.


Asunto(s)
Cisteína/fisiología , Disulfuros/metabolismo , Muramidasa/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Tripsina/metabolismo , Sitios de Unión , Catálisis , Secuencia Conservada , Reactivos de Enlaces Cruzados/química , Cisteína/química , Disulfuros/química , Resistencia a Medicamentos , Muramidasa/química , Muramidasa/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Proteolisis/efectos de los fármacos , Tripsina/farmacología
5.
Mol Microbiol ; 98(2): 218-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26135358

RESUMEN

Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus.


Asunto(s)
Proteínas Bacterianas/genética , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Proteínas Hierro-Azufre/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Aconitato Hidratasa/metabolismo , Apoproteínas/metabolismo , Cisteína/biosíntesis , Cisteína/deficiencia , Cisteína/fisiología , Glucosamina/biosíntesis , Glucosamina/deficiencia , Glucosamina/fisiología , Glutamato Sintasa/metabolismo , Homeostasis/genética , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción , Fenotipo , Staphylococcus aureus/química , Azufre/metabolismo
6.
Biochem J ; 465(3): 371-82, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25287744

RESUMEN

Neutral sphingomyelinase-2 (nSMase-2) is the major sphingomyelinase activated in response to pro-inflammatory cytokines and during oxidative stress. It is a membrane-bound 655 amino acid protein containing 22 cysteine residues. In this study, we expressed recombinant mouse nSMase-2 protein in Escherichia coli, and investigated whether nSMase-2 is a redox sensitive enzyme. Our results demonstrate that nSMase-2 exists as both monomers and multimers that are associated with high and low enzymatic activity respectively. Mutational analysis of nSMase-2 identified within its C-terminal catalytic domain several oxidant-sensitive cysteine residues that were shown to be involved in enzyme oligomerization. Changing Cys(617) to Ser for example is a gain-of-function mutation associated with a decreased propensity for oligomerization. Alternatively, nSMase-2 expression in a bacterial strain that lacks endogenous thioredoxin, Rosetta-gami2, results in increased oligomer formation and lower enzyme activity. Phenotypic rescue was accomplished by treating nSMase-2 lysates with recombinant human thioredoxin. This indicates that nSMase-2 may be a novel substrate for thioredoxin. FRET analysis confirmed the presence of nSMase-2 multimers in mammalian HEK cells and their localization to the plasma membrane. In conclusion, our results identify nSMase-2 as a redox-sensitive enzyme, whose basal activity is influenced by thioredoxin-mediated changes in its oligomeric state.


Asunto(s)
Cisteína/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Catálisis/efectos de los fármacos , Cisteína/química , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Células HEK293 , Humanos , Ratones , Oxidación-Reducción/efectos de los fármacos , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/genética , Tiorredoxinas/farmacología
7.
J Sex Med ; 12(10): 2004-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26437677

RESUMEN

INTRODUCTION: Resveratrol (RVT) found in red wine protects against erectile dysfunction and relaxes penile tissue (corpus cavernosum) via a nitric oxide (NO) independent pathway. However, the mechanism remains to be elucidated. Hydrogen sulfide (H2 S) is a potent vasodilator and neuromodulator generated in corpus cavernosum. AIMS: We investigated whether RVT caused the relaxation of mice corpus cavernosum (MCC) through H2 S. METHODS: H2 S formation is measured by methylene blue assay and vascular reactivity experiments have been performed by DMT strip myograph in CD1 MCC strips. MAIN OUTCOME MEASURES: Endothelial NO synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 0.1 mM) or H2 S inhibitor aminooxyacetic acid (AOAA, 2 mM) which inhibits both cystathionine-ß-synthase (CBS) and cystathionine-gamma-lyase (CSE) enzyme or combination of AOAA with PAG (CSE inhibitor) has been used in the presence/absence of RVT (0.1 mM, 30 min) to elucidate the role of NO or H2 S pathways on the effects of RVT in MCC. Concentration-dependent relaxations to RVT, L-cysteine, sodium hydrogen sulfide (NaHS) and acetylcholine (ACh) were studied. RESULTS: Exposure of murine corpus cavernosum to RVT increased both basal and L-cysteine-stimulated H2 S formation. Both of these effects were reversed by AOAA but not by L-NNA. RVT caused concentration-dependent relaxation of MCC and that RVT-induced relaxation was significantly inhibited by AOAA or AOAA + PAG but not by L-NNA. L-cysteine caused concentration-dependent relaxations, which are inhibited by AOAA or AOAA + PAG significantly. Incubation of MCC with RVT significantly increased L-cysteine-induced relaxation, and this effect was inhibited by AOAA + PAG. However, RVT did not alter the effect of exogenous H2 S (NaHS) or ACh-induced relaxations. CONCLUSIONS: These results demonstrate that RVT-induced relaxation is at least partly dependent on H2 S formation and acts independent of eNOS pathway. In phosphodiesterase 5 inhibitor (PDE-5i) nonresponder population, combination therapy with RVT may reverse erectile dysfunction via stimulating endogenous H2 S formation.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Relajación Muscular/efectos de los fármacos , Erección Peniana/efectos de los fármacos , Pene/patología , Estilbenos/farmacología , Vasodilatadores/farmacología , Animales , Arginina/farmacología , Cisteína/metabolismo , Cisteína/fisiología , Masculino , Ratones , Óxido Nítrico/metabolismo , Pene/efectos de los fármacos , Resveratrol , Transducción de Señal/efectos de los fármacos
8.
Infect Immun ; 82(1): 316-32, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166956

RESUMEN

In Staphylococcus aureus, the low-molecular-weight thiol called bacillithiol (BSH), together with cognate S-transferases, is believed to be the counterpart to the glutathione system of other organisms. To explore the physiological role of BSH in S. aureus, we constructed mutants with the deletion of bshA (sa1291), which encodes the glycosyltransferase that catalyzes the first step of BSH biosynthesis, and fosB (sa2124), which encodes a BSH-S-transferase that confers fosfomycin resistance, in several S. aureus strains, including clinical isolates. Mutation of fosB or bshA caused a 16- to 60-fold reduction in fosfomycin resistance in these S. aureus strains. High-pressure liquid chromatography analysis, which quantified thiol extracts, revealed some variability in the amounts of BSH present across S. aureus strains. Deletion of fosB led to a decrease in BSH levels. The fosB and bshA mutants of strain COL and a USA300 isolate, upon further characterization, were found to be sensitive to H2O2 and exhibited decreased NADPH levels compared with those in the isogenic parents. Microarray analyses of COL and the isogenic bshA mutant revealed increased expression of genes involved in staphyloxanthin synthesis in the bshA mutant relative to that in COL under thiol stress conditions. However, the bshA mutant of COL demonstrated decreased survival compared to that of the parent in human whole-blood survival assays; likewise, the naturally BSH-deficient strain SH1000 survived less well than its BSH-producing isogenic counterpart. Thus, the survival of S. aureus under oxidative stress is facilitated by BSH, possibly via a FosB-mediated mechanism, independently of its capability to produce staphyloxanthin.


Asunto(s)
Proteínas Bacterianas/fisiología , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Estrés Oxidativo/fisiología , Staphylococcus aureus/metabolismo , Amidohidrolasas/deficiencia , Análisis de Varianza , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cisteína/genética , Cisteína/fisiología , Glucosamina/genética , Glucosamina/fisiología , Glicosiltransferasas/genética , Peróxido de Hidrógeno/farmacología , Análisis por Micromatrices , Pruebas de Sensibilidad Microbiana , Mutación , NADP/metabolismo , Peroxidasa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Xantófilas/biosíntesis
9.
Mol Cell Biochem ; 386(1-2): 85-98, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24104454

RESUMEN

Sod2 is the major salt tolerance plasma membrane protein of Schizosaccharomyces pombe. It functions to remove excess intracellular sodium (or lithium) in exchange for protons. We investigated the role of cysteine residues and created a cysteine-free Sod2 protein. Each cysteine residue of the ten present was individually mutated to serine and the different proteins expressed and characterized in S. pombe. Western blotting revealed that all the individual mutant proteins were expressed. We examined the ability of the mutant proteins to confer salt tolerance to S. pombe with the endogenous Sod2 protein deleted. Only proteins with C26S and C374S mutations were partially reduced in their ability to confer salt tolerance. Additionally, they showed a change in conformation in comparison to the wild-type protein, indicated by differential sensitivity to trypsin. Deletion of all the cysteine residues of Sod2 resulted in a functional protein that was expressed in S. pombe at levels similar to the wild type and also conferred salt tolerance. The conformation of the cysteine-free Sod2 protein was not altered relative to the wild-type protein. We examined the accessibility of amino acids of the cysteineless protein present on putative extracellular loop 2. A cysteine placed at position Ala119 was accessible to externally applied [2-(trimethylammonium)ethyl] methane thiosulfonate bromide. The results demonstrate that cysteines in the Sod2 protein can be changed to serine residues resulting in an expressed, functional protein. The utility of the cysteine-free Sod2 protein for determination of topology and amino acid accessibility is demonstrated.


Asunto(s)
Adaptación Fisiológica , Cisteína/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Cloruro de Sodio , Intercambiadores de Sodio-Hidrógeno/fisiología , Secuencia de Bases , Western Blotting , Cartilla de ADN , Mutagénesis Sitio-Dirigida , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Tripsina/metabolismo
10.
Bioorg Chem ; 52: 62-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24368170

RESUMEN

Tuberculosis (TB) is the world's second commonest cause of death next to HIV/AIDS. The increasing emergence of multi drug resistance and the recalcitrant nature of persistent infections pose an additional challenge for the treatment of TB. Due to the development of resistance to conventional antibiotics there is a need for new therapeutic strategies to combat M. tuberculosis. One such target is Mycothiol (MSH), a major low molecular-mass thiol in mycobacteria, an important cellular anti-oxidant. MSH is present only in actinomycetes and hence is a good target. This review explores mycothiol as a potential target against tuberculosis and various research ongoing worldwide.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Cisteína/fisiología , Glicopéptidos/fisiología , Inositol/fisiología , Mycobacterium tuberculosis/metabolismo , Cisteína/biosíntesis , Glicopéptidos/biosíntesis , Inositol/biosíntesis , Terapia Molecular Dirigida , Mycobacterium tuberculosis/efectos de los fármacos
11.
Nucleic Acids Res ; 40(22): 11659-72, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23034808

RESUMEN

SR1 is a dual-function sRNA that acts as a base-pairing regulatory RNA on the ahrC mRNA and as a peptide-encoding mRNA on the gapA operon. The SR1-encoded peptide SR1P binds GapA thereby stabilizing gapA mRNA. Under glycolytic conditions, SR1 transcription is repressed by CcpN and CcpA. A computer-based search identified 23 SR1 homologues in Bacillus, Geobacillus, Anoxybacillus and Brevibacillus species. All homologues share a high structural identity with Bacillus subtilis SR1, and the encoded SR1P peptides are highly similar. In the Bacillus cereus group, the sr1p region is present in triplicate or duplicate resulting in longer SR1 species. In all cases, sr1 expression is under control of CcpN, and transcriptional lacZ fusions of nine examined SR1 homologues were sensitive to glucose. Two homologues showed an additional glucose-independent repression by CcpN and an unknown factor. A total of 10 out of 11 tested SR1P homologues complemented a B. subtilis Δsr1 strain in their ability to stabilize gapA mRNA, but only five of them bound GapA tightly. In vitro binding assays with six SR1/ahrC pairs suggest that-despite divergent primary sequences-the base-pairing function is also preserved. In summary, SR1 is an sRNA with two functions that have been conserved over ≈1 billion years.


Asunto(s)
Bacillus subtilis/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cisteína/fisiología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Péptidos/química , Filogenia , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Bacteriano/química , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Sintenía , Transactivadores/genética
12.
J Neurosci ; 32(46): 16306-13, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152614

RESUMEN

Wnt/ß-catenin is a neuroprotective pathway regulating cell fate commitment in the CNS and many vital functions of neurons and glia. Its dysregulation is linked to a number of neurodegenerative diseases. Wnt/ß-catenin is also a repressor of HIV transcription in multiple cell types, including astrocytes, which are dysregulated in HIV-associated neurocognitive disorder. Given that HIV proteins can overcome host restriction factors and that perturbations of Wnt/ß-catenin signaling can compromise astrocyte function, we evaluated the impact of HIV transactivator of transcription (Tat) on Wnt/ß-catenin signaling in astrocytes. HIV clade B Tat, in primary progenitor-derived astrocytes and U87MG cells, inhibited Wnt/ß-catenin signaling as demonstrated by its inhibition of active ß-catenin, TOPflash reporter activity, and Axin-2 (a downstream target of Wnt/ß-catenin signaling). Point mutations in either the core region (K41A) or the cysteine-rich region (C30G) of Tat abrogated its ability to inhibit ß-catenin signaling. Clade C Tat, which lacks the dicysteine motif, did not alter ß-catenin signaling, confirming that the dicysteine motif is critical for Tat inhibition of ß-catenin signaling. Tat coprecipitated with TCF-4 (a transcription factor that partners with ß-catenin), suggesting a physical interaction between these two proteins. Furthermore, knockdown of ß-catenin or TCF-4 enhanced docking of Tat at the TAR region of the HIV long terminal repeat. These findings highlight a bidirectional interference between Tat and Wnt/ß-catenin that negatively impacts their cognate target genes. The consequences of this interaction include alleviation of Wnt/ß-catenin-mediated suppression of HIV and possible astrocyte dysregulation contributing to HIV neuropathogenesis.


Asunto(s)
Complejo SIDA Demencia/patología , Astrocitos/fisiología , VIH-1/enzimología , Transducción de Señal/fisiología , Proteínas Wnt/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/fisiología , Western Blotting , Línea Celular , Cisteína/fisiología , Citometría de Flujo , Productos del Gen tat/fisiología , Genes Reporteros/genética , Ácido Glutámico/metabolismo , VIH-1/genética , Humanos , Inmunoprecipitación , Luciferasas/metabolismo , Plásmidos/genética , Mutación Puntual/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética
13.
Biochim Biophys Acta ; 1819(5): 382-90, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22306661

RESUMEN

Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In Synechococcus sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high light stress require activation by the phosphorylation-independent response regulator NblR. Structural modelling of its receiver domain suggested a role for Cys69 and Cys96 on activation of NblR. Here, we investigate this hypothesis by engineering Cys to Ala substitutions. In vivo and in vitro analyses indicated that mutations Cys69Ala and/or Cys96Ala have a minor impact on NblR function, structure, size, or oligomerization state of the protein, and that Cys69 and Cys96 do not seem to form disulphide bridges. Our results argue against the predicted involvement of Cys69 and Cys96 on NblR activation by redox sensing.


Asunto(s)
Alanina , Proteínas Bacterianas/química , Cisteína , Fotosíntesis , Factores de Transcripción/química , Alanina/genética , Alanina/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cisteína/genética , Cisteína/fisiología , Regulación Bacteriana de la Expresión Génica , Luz , Oxidación-Reducción , Fosforilación , Fotosíntesis/genética , Fotosíntesis/fisiología , Ficobilisomas/genética , Ficobilisomas/fisiología , Conformación Proteica , Alineación de Secuencia , Estrés Fisiológico , Synechococcus/genética , Synechococcus/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
Clin Calcium ; 23(11): 1613-9, 2013 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-24162601

RESUMEN

It has been known that reactive oxygen species (ROS) control the enzymatic and transcriptional activity of proteins via direct modification of cysteine residues. Hence, oxidation of cysteine thiol could be a vital modulator of signal transduction pathways. These findings indicate that some proteins serve as the sensor proteins highly sensitive to ROS. In this review, I show the relationship between intracellular ROS sensor and the regulation of protein function via oxidation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Cisteína/análogos & derivados , Cisteína/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Proteína Disulfuro Isomerasas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Especies Reactivas de Oxígeno
15.
J Physiol ; 590(6): 1443-63, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22250211

RESUMEN

Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2'-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP­GSH and GSSG­pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP­GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP­GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP­GSH nor any S-glutathionylation of TnI(f) (latter examined only in toad). Following 40 min of cycling exercise in human subjects (at ∼60% peak oxygen consumption), TnI(f) in vastus lateralis muscle displayed a marked increase in S-glutathionylation (∼4-fold). These findings show that S-glutathionylation of TnI(f), most probably at Cys133, increases the Ca2+ sensitivity of the contractile apparatus, and that this occurs in exercising humans, with likely beneficial effects on performance.


Asunto(s)
Calcio/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Troponina I/fisiología , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacología , Adulto , Animales , Bufo marinus , Pollos , Cisteína/fisiología , Disulfuros/farmacología , Ejercicio Físico/fisiología , Femenino , Glutatión/farmacología , Disulfuro de Glutatión/farmacología , Humanos , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/fisiología , Conejos , Ratas , Ratas Long-Evans , Porcinos , Adulto Joven
16.
J Pharmacol Exp Ther ; 340(1): 218-26, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22005043

RESUMEN

N-Methyl-D-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sustitución de Aminoácidos , Arginina/fisiología , Células Cultivadas , Cisteína/fisiología , ADN Complementario/genética , Disulfuros/química , Fenómenos Electrofisiológicos , Humanos , Modelos Moleculares , Mutación/genética , Mutación/fisiología , Técnicas de Placa-Clamp , Conformación Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Transfección
17.
J Muscle Res Cell Motil ; 33(5): 305-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22752265

RESUMEN

Myosin's affinities for nucleotides and actin are reciprocal. Actin-binding substantially reduces the affinity of ATP for myosin, but the effect of actin on myosin's ADP affinity is quite variable among myosin isoforms, serving as the principal mechanism for tuning the actomyosin system to specific physiological purposes. To understand the structural basis of this variable relationship between actin and ADP binding, we studied several constructs of the catalytic domain of Dictyostelium myosin II, varying their length (from the N-terminal origin) and cysteine content. The constructs varied considerably in their actin-activated ATPase activity and in the effect of actin on ADP affinity. Actin had no significant effect on ADP affinity for a single-cysteine catalytic domain construct, a double-cysteine construct partially restored the actin-dependence of ADP binding, and restoration of all native Cys restored it further, but full restoration of function (similar to that of skeletal muscle myosin II) was obtained only by adding all native Cys and an artificial lever arm extension. Pyrene-actin fluorescence confirmed these effects on ADP binding to actomyosin. We conclude that myosin's Cys content and lever arm both allosterically modulate the reciprocal affinities of myosin for ADP and actin, a key determinant of the biological functions of myosin isoforms.


Asunto(s)
Dominio Catalítico/fisiología , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Actinas/química , Actinas/fisiología , Actomiosina/química , Actomiosina/fisiología , Adenosina Difosfato/química , Adenosina Difosfato/fisiología , Adenosina Trifosfato/química , Adenosina Trifosfato/fisiología , Regulación Alostérica/fisiología , Cisteína/química , Cisteína/fisiología , Dictyostelium/química , Miosina Tipo II/química , Unión Proteica/fisiología
18.
Mol Cell Biochem ; 359(1-2): 271-81, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21842374

RESUMEN

Calnexin is an endoplasmic reticulum protein that has a role in folding newly synthesized glycoproteins. In this study, we used site-specific mutagenesis to disrupt cysteine and histidine amino acid residues in the N- and P-domains of calnexin and determined whether these mutations impact the structure and function of calnexin. We identified that disruption of the N-domain cysteines resulted in significant loss of the chaperone activity of calnexin toward the glycosylated substrate, IgY, while disruption of the P-domain cysteines only had a small impact toward IgY. We observed that wild-type calnexin as well as the P-domain double cysteine mutant contained an intramolecular disulfide bond which is lost when the N-domain cysteines are mutated. Mutation to the N-domain histidine and N-domain cysteines resulted in increased binding of ERp57. Mutations to the P-domain cysteines further enhanced ERp57 binding to calnexin. Taken together, these observations indicated that the cysteine residues within calnexin were important for the structure and function of calnexin.


Asunto(s)
Calnexina/química , Cisteína/fisiología , Calnexina/genética , Calnexina/metabolismo , Disulfuros , Histidina , Humanos , Inmunoglobulinas , Chaperonas Moleculares , Mutagénesis Sitio-Dirigida , Proteína Disulfuro Isomerasas/metabolismo , Transporte de Proteínas
19.
Purinergic Signal ; 8(2): 317-25, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22286664

RESUMEN

The P2X7 receptor (P2X7R) is a member of the ATP-gated ion channel family that exhibits distinct electrophysiological and pharmacological properties. This includes low sensitivity to ATP, lack of desensitization, a sustained current growth during prolonged receptor stimulation accompanied with development of permeability to large organic cations, and the coupling of receptor activation to cell blebbing and death. The uniquely long C-terminus of P2X7R accounts for many of these receptor-specific functions. The aim of this study was to understand the role of conserved ectodomain cysteine residues in P2X7R function. Single- and double-point threonine mutants of C119-C168, C129-C152, C135-C162, C216-C226, and C260-C269 cysteine pairs were expressed in HEK293 cells and studied using whole-cell current recording. All mutants other than C119T-P2X7R responded to initial and subsequent application of 300-µM BzATP and ATP with small amplitude monophasic currents or were practically nonfunctional. The mutagenesis-induced loss of function was due to decreased cell-surface receptor expression, as revealed by assessing levels of biotinylated mutants. Coexpression of all double mutants with the wild-type receptor had a transient or, in the case of C119T/C168T double mutant, sustained inhibitory effect on receptor trafficking. The C119T-P2X7R mutant was expressed on the plasma membrane and was fully functional with a slight decrease in the sensitivity for BzATP, indicating that interaction of liberated Cys168 with another residue rescues the trafficking of receptor. Thus, in contrast to other P2XRs, all disulfide bonds of P2X7R are individually essential for the proper receptor trafficking.


Asunto(s)
Secuencia Conservada , Cisteína/fisiología , Receptores Purinérgicos P2X7/metabolismo , Animales , Cisteína/biosíntesis , Cisteína/genética , Células HEK293 , Humanos , Mutación/fisiología , Transporte de Proteínas/fisiología , Ratas , Receptores Purinérgicos P2X7/genética
20.
Biochem J ; 434(2): 219-31, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21143193

RESUMEN

TMEM192 (transmembrane protein 192) is a novel constituent of late endosomal/lysosomal membranes with four potential transmembrane segments and an unknown function that was initially discovered by organellar proteomics. Subsequently, localization in late endosomes/lysosomes has been confirmed for overexpressed and endogenous TMEM192, and homodimers of TMEM192 linked by disulfide bonds have been reported. In the present study the molecular determinants of TMEM192 mediating its transport to late endosomes/lysosomes were analysed by using CD4 chimaeric constructs and mutagenesis of potential targeting motifs in TMEM192. Two directly adjacent N-terminally located dileucine motifs of the DXXLL-type were found to be critical for transport of TMEM192 to late endosomes/lysosomes. Whereas disruption of both dileucine motifs resulted in mistargeting of TMEM192 to the plasma membrane, each of the two motifs was sufficient to ensure correct targeting of TMEM192. In order to study disulfide bond formation, mutagenesis of cysteine residues was performed. Mutation of Cys266 abolished disulfide bridge formation between TMEM192 molecules, indicating that TMEM192 dimers are linked by a disulfide bridge between their C-terminal tails. According to the predicted topology, Cys266 would be localized in the reductive milieu of the cytosol where disulfide bridges are generally uncommon. Using immunogold labelling and proteinase protection assays, the localization of the N- and C-termini of TMEM192 on the cytosolic side of the late endosomal/lysosomal membrane was experimentally confirmed. These findings may imply close proximity of the C-termini in TMEM192 dimers and a possible involvement of this part of the protein in dimer assembly.


Asunto(s)
Cisteína/fisiología , Endosomas/metabolismo , Leucina/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Cisteína/genética , Dimerización , Disulfuros/química , Disulfuros/metabolismo , Humanos , Leucina/genética , Pliegue de Proteína , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA