Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Res ; 249: 118306, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307184

RESUMEN

Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Miel , Abejas , Argentina , Animales , Miel/análisis , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Ceras/análisis , Ceras/química , Éteres Difenilos Halogenados/análisis , Plaguicidas/análisis , Estaciones del Año , Cloropirifos/análisis
2.
J Endocrinol Invest ; 47(2): 389-399, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37574529

RESUMEN

INTRODUCTION: Erectile dysfunction (ED) poses a significant disease morbidity and contributor to male infertility, where an estimated 20-40% of men are affected annually. While several risk factors have been identified in the etiology of ED (e.g., aging, heart disease, diabetes, and obesity), the complete pathogenesis remains to be elucidated. Over the last few decades, the contribution of environmental exposures to the pathogenesis of ED has gained some attention, though population studies are limited and results are mixed. Among environmental contaminants, organophosphate (OP) insecticides represent one of the largest chemical classes, and chlorpyrifos is the most commonly used OP in the U.S. OP exposure has been implicated in driving biological processes, including inflammation, reactive oxygen species production, and endocrine and metabolism disruption, which have been demonstrated to adversely affect the hypothalamus and testes and may contribute to ED. Currently, studies evaluating the association between OPs and ED within the U.S. general population are sparse. METHODS: Data were leveraged from the National Health and Nutrition Examination Survey (NHANES), which is an annually conducted, population-based cross-sectional study. Urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of the most pervasive OP insecticide chlorpyrifos, were quantified as measures of OP exposure. ED was defined by responses to questionnaire data, where individuals who replied "sometimes able" or "never able" to achieve an erection were classified as ED. Chi-square, analysis of variance (ANOVA), and multivariable, weighted linear and logistic regression analyses were used to compare sociodemographic variables between quartiles of TCPy exposure, identify risk factors for TCPy exposure and ED, and to analyze the relationship between TCPy and ED. RESULTS: A total of 671 adult men were included in final analyses, representing 28,949,379 adults after survey weighting. Approximately 37% of our cohort had ED. Smoking, diabetes, aging, Mexican-American self-identification, and physical inactivity were associated with higher ED prevalence. Analysis of TCPy modeled as a continuous variable revealed nonsignificant associations with ED (OR = 1.02 95% CI [0.95, 1.09]). Stratification of total TCPy into quartiles revealed increased odds of ED among adults in the second and fourth quartiles, using the first quartile as the reference (OR = 2.04 95% CI [1.11, 3.72], OR = 1.51 95% CI [0.58, 3.93], OR = 2.62 95% CI [1.18, 5.79], for quartiles 2, 3, and 4, respectively). CONCLUSIONS: The results of our study suggest a potential role for chlorpyrifos and other OPs the pathogenesis of ED. Future studies are warranted to validate these findings, determine clinical significance, and to investigate potential mechanisms underlying these associations.


Asunto(s)
Cloropirifos , Diabetes Mellitus , Disfunción Eréctil , Insecticidas , Adulto , Humanos , Masculino , Insecticidas/toxicidad , Insecticidas/análisis , Cloropirifos/toxicidad , Cloropirifos/análisis , Encuestas Nutricionales , Disfunción Eréctil/inducido químicamente , Disfunción Eréctil/epidemiología , Prevalencia , Estudios Transversales , Compuestos Organofosforados/orina , Piridinas
3.
Luminescence ; 39(8): e4859, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108165

RESUMEN

Chlorpyrifos (CPS) is widely found in food and water sources due to agricultural use, posing health and environmental risks. Therefore, this work introduces a fluorescent sensor design of silver nanoparticle-embedded nano zirconium-based metal-organic frameworks (UiO-66-NH2@AgNPs) for accurate examination of CPS. Briefly, UiO-66-NH2 was synthesized hydrothermally, exhibiting weak luminescence owed to ligand-to-metal charge transfer (LMCT). Here, it limits its direct utility in fluorescence-based detection. To address this limitation, silver nanoparticles (AgNPs) were introduced into UiO-66-NH2, enhancing fluorescence via the metal-enhanced fluorescence (MEF) effect. Briefly, a comprehensive spectral analysis such as XPS, SEM, TEM, PXRD, etc., was performed to validate the synthesis of UiO-66-NH2@AgNPs. Subsequent evaluation revealed that CPS effectively quenched the luminescence intensity of UiO-66-NH2@AgNPs through a static quenching mechanism. The fluorescence intensity exhibited good linearity with CPS concentration in the span of 10 to 1,000 ng/mL, with a recognition limit of 191.5 ng/mL(S/N = 3). The interaction involved Ag-S bond formation and electrostatic interactions, reducing fluorescence intensity. The method was confirmed through successful CPS detection in fruit samples. The UiO-66-NH2@AgNPs nanoprobe offers a simple, sensitive, and accurate platform for CPS sensing, with potential for future use in detecting CPS in fruits and vegetables.


Asunto(s)
Cloropirifos , Nanopartículas del Metal , Estructuras Metalorgánicas , Plata , Circonio , Cloropirifos/análisis , Plata/química , Circonio/química , Estructuras Metalorgánicas/química , Nanopartículas del Metal/química , Espectrometría de Fluorescencia , Límite de Detección , Insecticidas/análisis
4.
J Environ Sci Health B ; 59(7): 368-377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764244

RESUMEN

Free enzymes cause difficulties in many applications due to their insufficient stability, loss of activity in a short time, and most importantly, although they are costly, they are used only once in reactions, lose their effect and cannot be recovered from the environment. Magnetic nanoparticles coated with biocompatible polymeric material are potential candidates for promising enzyme carriers due to their multifunctional pore surfaces, easy removal from the environment provided by the magnetization, ability to main stability under various harsh conditions. This study prepared a biosensor candidate based on the inhibiting acetylcholinesterase enzyme by organophosphate pesticides from chitosan-coated magnetic nanoparticles doped with gold. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction diffractometry, and Fourier transform infrared spectroscopy analysis confirmed the structure of synthesized nanocomposites. Magnetic characteristics of the nanocomposites were assessed using VSM. Bio-nanocomposite (Fe3O4@Cht/Au/AChE) was used to determine environmental pollutants qualitatively. Remediation of organophosphate-containing wastewater is an essential issue for environmental sustainability. In this work, Dichlorvos and Chlorpyrifos were selected as organic pollutants to assess the enzymatic activity of immobilized Fe3O4@Cht/Au/AChE. Optimum conditions for AChE enzyme were immobilized nanostructures (Fe3O4@Cht/Au/AChE) were determined. The optimum pH for the immobilized enzyme was found to be 8, and the optimum temperature was found to be 60 °C. Retained immobilized enzyme activity is found to be around 50% for the 20th reuse. In the presence of 150 µL pesticide, retained immobilized enzyme activity is found to be around 25%. Method validation was performed for pesticides. When using immobilized AChE, the LOD (limit of detection)-LOQ (limit of quantitation) values for Dichlorovos and Chlorpyrifos was obtained in the range of 0.0087-0.029 nM and 0.0014-0.0046 nM, respectively. The relative standard deviation (RSD%) values, which are indicators of precision, were found to be below 2%.


Asunto(s)
Acetilcolinesterasa , Cloropirifos , Enzimas Inmovilizadas , Nanocompuestos , Plaguicidas , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Enzimas Inmovilizadas/química , Nanocompuestos/química , Plaguicidas/química , Cloropirifos/análisis , Quitosano/química , Técnicas Biosensibles , Nanopartículas de Magnetita/química , Diclorvos , Oro/química
5.
Anim Biotechnol ; 34(3): 738-745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34559034

RESUMEN

Chlorpyrifos is an organophosphate and the cypermethrin is type 2 pyrethroid insecticide that are used for indoor and outdoor pest control. The present study aimed to investigate differential transcriptional profiling to identify the candidate gene associated with lung injury following exposure to chlorpyrifos and/or cypermethrin in a mouse model system. Swiss male albino mice (n = 24) were divided into three treatment groups (n = 6 each) that were given chlorpyrifos (2.76 mg kg-1 body weight), cypermethrin (2 mg kg-1 body weight) and the combination of both pesticides orally dissolved in corn oil and one control group (n = 6) that received corn oil for 90 days. The pulmonary expression of the Apaf1 was observed using RT2 Profiler PCR Array. The results showed that chronic exposure to chlorpyrifos, cypermethrin and their combination downregulated (67, 63 and 66 genes) and upregulated (4, 2 and 2 genes), respectively. The pulmonary expression of Apaf1 that plays important role in apoptosis was found to be downregulated. The immunohistochemistry depicted reduced expression of Apaf1 in both airway epithelium and alveolar septa following exposure to chlorpyrifos and/or cypermethrin. In conclusion, results demonstrated that exposure to chlorpyrifos, cypermethrin and their combination cause lung damage by the dysregulation of Apaf1 gene expression.


Asunto(s)
Cloropirifos , Piretrinas , Ratones , Masculino , Animales , Cloropirifos/toxicidad , Cloropirifos/análisis , Regulación hacia Abajo , Aceite de Maíz/análisis , Piretrinas/toxicidad , Piretrinas/análisis , Pulmón
6.
Ecotoxicol Environ Saf ; 263: 115229, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441953

RESUMEN

Cantaloupe is a popular agricultural product in the hot season of Iran. On the other hand, the frequent use of pesticides in cantaloupe fields is the most important threat to the health of farmers and consumers. Therefore, the present study aims to measure the concentration of diazinon (DZN), chlorpyrifos (CPF), and malathion (MLT) in cantaloupe cultivated in Kashan and Aran-Bidgol (Iran) and to estimate the possible oral and dermal risk of these pesticides by Monte Carlo simulation (MCS). 36 cantaloupe samples, 18 samples before, and 18 samples after the latent period were collected from different places of cantaloupe cultivation from April to May 2021. After measuring the pesticides using the QuEChERS approach, oral and dermal risk assessments were calculated.The mean and standard deviation of the concentrations of chlorpyrifos, malathion, and diazinon in 18 cantaloupe samples, after the latent period, were (30.39 ± 13.85), (18.361 ± 1.8), and (21.97 ± 0.86) µg kg-1, respectively. Concentration of Malathion, diazinon, and Chlorpyrifos in the soil were 0.22, 0.25, and 0.3 mg kg-1, respectively, and pesticide cumulative risk assessment in soil was obtained 0.011 for Malathion, 0.05 for diazinon and 0.03 for Chlorpyrifos. Target Hazard Quotient (THQ) according to the cantaloupe consumption and dermal exposure in children and adults, was safe range. Although non-cancerous dermal and oral risk of cantaloupe is low, constant exposure can be harmful. Therefore, the findings of this study play an important role in increasing the understanding of the negative health consequences of pesticide contamination in cantaloupe for consumers, especially local residents, and can help by adopting remedial strategies to reduce environmental concerns.


Asunto(s)
Cloropirifos , Cucumis melo , Residuos de Plaguicidas , Plaguicidas , Adulto , Niño , Humanos , Residuos de Plaguicidas/análisis , Cloropirifos/análisis , Diazinón , Malatión , Suelo , Irán , Método de Montecarlo , Plaguicidas/análisis , Medición de Riesgo
7.
Environ Monit Assess ; 196(1): 58, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110624

RESUMEN

Mancozeb residue estimation was done using second derivative ultraviolet spectroscopy by Shimadzu ultraviolet-visible spectrophotometer, and chlorpyrifos was estimated by QuEChERS technique using GC-FPD. The persistence for chlorpyrifos was carried out at two locations, and for mancozeb, persistence studies were carried out at four locations. Initial deposits of mancozeb on apple fruits ranged from 1.33 to 1.63 mg/kg at the recommended dose and from 2.55 to 3.26 mg/kg at double the recommended dose at all four locations. Chlorpyrifos residues in apple fruits had an initial deposit of 0.94-0.99 mg/kg at recommended dose and 1.75-1.92 mg/kg at double the recommended dose. Mancozeb residues in apple fruit were below the detection limit (BDL) after 20 days at recommended dose and after 25 days at double the recommended dose at two locations, while mancozeb residue at the other two locations and the residues of chlorpyrifos at all locations reached BDL after 15 and 20 days at recommended and double the recommended doses, respectively. Half-life of mancozeb varied from 3.07 to 4.02 days at recommended dose and from 3.30 to 4.32 days at double the recommended dose, whereas chlorpyrifos residues dissipated to half their initial concentration on 2.33-2.35 days at recommended dose and 2.89-2.90 days at double the recommended dose. The soil samples showed no presence of residues of chlorpyrifos and mancozeb at harvest. The risk assessment revealed that hazard quotient for the intake of mancozeb was in the range of 0.06-0.13% and 0.20-0.44% for rural and urban population, while for the intake of chlorpyrifos, hazard quotient was in the range of 0.10-0.12% for rural population and 0.33-0.38% for urban population, and theoretical maximum dietary intake (9.67 × 10-5 mg/person and 3.18 × 10-4 mg/person for rural population and urban population in case of mancozeb and 3.22 × 10-5 mg/person and 1.06 × 10-4 mg/person for rural population and urban population in case of chlorpyrifos) was also found to be less than maximum permissible intake (1.38 mg/kg for mancozeb and 0.60 mg/kg for chlorpyrifos). The results of risk assessment thereby indicated that apple consumption does not pose a risk to human health.


Asunto(s)
Cloropirifos , Malus , Residuos de Plaguicidas , Contaminantes del Suelo , Humanos , Cloropirifos/análisis , Frutas/química , Suelo/química , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Semivida
8.
J Sep Sci ; 45(2): 422-431, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34723432

RESUMEN

In this study, sample pretreatment methods have been developed for the determination of chlorpyrifos, diazinon, and their by-products present in cherry tomato and perilla leaf using liquid chromatography-tandem mass spectrometry. To optimize a quick, easy, cheap, effective, rugged, and safe method, the recoveries at each step were evaluated. The steps improved the recoveries of chlorpyrifos, chlorpyrifos oxon, diazinon, diazoxon, and 2-isopropyl-6-methyl-4-pyrimidinol up to 80% or more by removing interferents, but diethyl phosphate was almost lost during the partition procedure, and the 3,5,6-trichloro-2-pyridinol recovery was below 65%. Therefore, the compounds were evaluated using different solvent compositions based on a quick polar pesticides method; note that 100% methanol showed acceptable extraction results. The optimized method provided method detection limits ranging from 0.03 to 1.22 ng/g and good linearities (R2  > 0.996). The recovery values were between 82.1 and 113.3%. The intra- and interday reproducibility was evaluated to be within 8.6 and 9.9%, respectively. The method was applied to determine the degradation efficiency of chlorpyrifos and diazinon and their by-products formed during plasma treatment.


Asunto(s)
Cloropirifos , Ozono , Perilla , Solanum lycopersicum , Cloropirifos/análisis , Diazinón/análisis , Hojas de la Planta/química , Reproducibilidad de los Resultados
9.
J Sep Sci ; 45(18): 3582-3593, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964286

RESUMEN

A combination of modified quick easy cheap effective rugged and safe extraction approach with carbon nano-onions-based dispersive solid-phase extraction and dispersive liquid-liquid microextraction was developed for the extraction of several pesticides (diazinon, chlorpyrifos, tebuconazole, deltamethrin, permethrin, haloxyfop-methyl, penconazole, and cyhalothrin) from grape before their analysis by gas chromatography-flame ionization detection. In the extraction approach, an aliquot of grape sample is chopped and after separating its juice, the pesticides that remained in the refuse are extracted by the quick, easy, cheap, effective, rugged, and safe extraction method. The obtained acetonitrile phase is mixed with juice and the analytes are extracted by the carbon nano-onions-based dispersive solid-phase extraction. The analytes are concentrated using the microextraction procedure to obtain high enrichment factors. The results showed low limits of detection (0.5-1.6 ng/g) and quantification (1.8-5.4 ng/g) with satisfactory linearity of the calibration curves (determination coefficient, r2 ≥ 0.994). The precision of the developed method expressed as relative standard deviations was good (≤7.2%). The method provided high enrichment factors (350-410) and extraction recoveries (70-82%). Finally, seven grape samples were analyzed successfully.


Asunto(s)
Cloropirifos , Microextracción en Fase Líquida , Plaguicidas , Vitis , Acetonitrilos , Carbono/análisis , Cloropirifos/análisis , Diazinón/análisis , Microextracción en Fase Líquida/métodos , Cebollas , Permetrina/análisis , Plaguicidas/análisis , Extracción en Fase Sólida/métodos
10.
Mikrochim Acta ; 189(5): 197, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459974

RESUMEN

Chlorpyrifos is one of the most widely used organophosphate insecticides in agricultural production. Nevertheless, the residues of chlorpyrifos in agricultural by-product seriously threaten human health. Thus, the ultrasensitive detection of chlorpyrifos residues in agri-food products is of great demand. Herein, an AuNP/HNT-assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues. The AuNP/HNT paper substrate exhibited high SERS activity, good reproducibility, and long-term stability, which was successfully used for quantitative detection of chlorpyrifos; the detection limit reached 7.9 × 10-9 M. For spiked apple samples the calculated recovery was 87.9% with a RSD value of 6.1%. The excellent detection ability of AuNP/HNT paper-based SERS substrate indicated that it will play an important role in pesticide detection in the future. AuNP/HNT assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues in fruits.


Asunto(s)
Cloropirifos , Nanopartículas del Metal , Nanotubos , Cloropirifos/análisis , Arcilla , Frutas/química , Oro/química , Humanos , Nanopartículas del Metal/química , Nanotubos/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
11.
Mikrochim Acta ; 189(11): 428, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264436

RESUMEN

The present research is an attempt to expand the recently reported microextraction on screw method. For this purpose, polyacrylonitrile/calcined ZnMgAl-LDH nanofiber was fabricated by the electrospinning technique on the surface of a screw. It was applied to the extraction of organophosphorus pesticides (OPP) from agricultural samples. The separation and determination of OPPs were carried out by gas chromatography-mass spectrometry. The characterization of the fabricated nanofiber was performed utilizing Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction instruments. Effective parameters on the extraction efficiency of the analytes including sample pH, ionic strength, sample flow rate and number of cycles, type, volume, and flow rate of desorption solvent were optimized by one-variable-at-a-time method. Under optimized conditions, the limits of detection were 0.03 and 0.07 µg L-1 for diazinon and chlorpyrifos, respectively. This method showed wide linearity in the range 0.10-1000 µg L-1 for diazinon and 0.25-1000 µg L-1 for chlorpyrifos with R2 > 0.996. The intra- and inter-day precisions (RSD%, n = 3) were ≤ 6.4% and ≤ 7.7%, respectively. Also, RSD% values less than 11.1% were obtained for screw-to-screw reproducibility. The applicability of the method for the extraction and determination of the analytes in complex agricultural environments such as cabbage, potato, tomato, cucumber, and beetroot was investigated. The results led to acceptable relative recoveries in the range 81.0-108.2%.


Asunto(s)
Cloropirifos , Nanofibras , Plaguicidas , Plaguicidas/análisis , Compuestos Organofosforados/análisis , Cloropirifos/análisis , Diazinón/análisis , Nanofibras/química , Reproducibilidad de los Resultados , Límite de Detección , Solventes/química , Tornillos Óseos
12.
J Sci Food Agric ; 102(14): 6612-6622, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35596658

RESUMEN

BACKGROUND: Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS: Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION: Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Terapia por Ultrasonido , Animales , Antioxidantes/análisis , Cloropirifos/análisis , Dimetoato/análisis , Fenitrotión/análisis , Fenitrotión/metabolismo , Fermentación , Leche/química , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Agua/análisis , Yogur/análisis
13.
J Sci Food Agric ; 102(10): 4266-4275, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35040126

RESUMEN

BACKGROUND: A combination of magnetic solid-phase extraction using an efficient and cheap magnetic sorbent obtained from sand and dispersive liquid-liquid microextraction has been developed for the extraction of nine multiclass pesticides (clodinafop-propargyl, haloxyfop-R-methyl, fenoxaprop-P-ethyl, oxadiazon, penconazole, diniconazole, chlorpyrifos, fenazaquin, and fenpropathrin) from commercial fruit juices (sour cherry, pomegranate, grape, watermelon, orange, apricot, and peach juices). The enriched pesticides were determined by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. The sorbent was natural iron oxide entrapped in silica along with some impurities. In this method, to extract the analytes from the samples, an appropriate amount of the magnetic sorbent (at mg level) is added. Then the sorbent particles are isolated from the solution using an external magnetic field and the adsorbed analytes are desorbed from the sorbent by acetone. In the following, a dispersive liquid-liquid microextraction procedure is carried out to concentrate the analytes more and to reach low limits of detection. RESULTS: Under optimized extraction conditions, the method revealed satisfactory repeatability (relative standard deviation ≤8% for intra-day and inter-day precision), reasonable extraction recovery (43.3-55.9%), high enrichment factors (433-559), and low limits of detection (0.45-0.89 µg L-1 ). CONCLUSION: The method was applied in the analysis of pesticides in various fruit juices. Chlorpyrifos was found in peach juice at a concentration of 27 ± 2 µg L-1 (n = 3) using a gas chromatography-flame ionization detector. To verify the results, the peach juice was also injected into gas chromatography-mass spectrometry after applying the proposed extraction method. © 2022 Society of Chemical Industry.


Asunto(s)
Cloropirifos , Microextracción en Fase Líquida , Plaguicidas , Cloropirifos/análisis , Jugos de Frutas y Vegetales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Líquida/métodos , Fenómenos Magnéticos , Plaguicidas/química , Arena , Extracción en Fase Sólida , Solventes/química
14.
J Environ Sci Health B ; 57(5): 339-349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35362360

RESUMEN

Field trials were conducted in Guangzhou, Nanning, and Nanjing in two consecutive years to evaluate the terminal residue levels and dissipation trend of pymetrozine and chlorpyrifos in rice ecosystem. Analyses were carried out by high-performance-liquid-chromatography for pymetrozine and gas-chromatography-mass-spectrometry for chlorpyrifos, achieved good linear relationship over range from 0.01 to 5.0 mg·kg-1 for both (r > 0.9998). Average recoveries were 86.0% to 106.0% for pymetrozine, and 79.7% to 102.3% for chlorpyrifos at the spiking levels of 0.01, 0.1 and 1.0 mg·kg-1. Half-lives of pymetrozine in paddy water, paddy soil and rice plant were 0.35-2.81, 2.69-6.95 and 1.22-3.70 days, while that of chlorpyrifos were 0.86-1.88, 3.09-6.86 and 0.58-2.84 days. Final residues of pymetrozine and chlorpyrifos in brown rice ranged from less than 0.6 to 26.0 µg·kg-1 and 14.3 to 191.6 µg·kg-1, respectively. It is recommended that 25% pymetrozine and chlorpyrifos suspension be sprayed twice at the intervals of 10 days with dosages ranging from 375 (maximum recommended dosage) to 562.5 g a.i.·ha-1 (1.5 times of the maximum recommended dosage). The rice can be harvested safely 15 days after the last application of pymetrozine and chlorpyrifos. The research results help ensures the safe application of pymetrozine and chlorpyrifos in rice ecosystem.


Asunto(s)
Cloropirifos , Oryza , Residuos de Plaguicidas , Cloropirifos/análisis , Ecosistema , Oryza/química , Residuos de Plaguicidas/análisis , Suelo/química , Triazinas
15.
J Environ Sci Health B ; 57(9): 745-755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048024

RESUMEN

In order to investigate the effect of diazinon and chlorpyrifos on agricultural workers exposed to pesticides, urinary metabolites 2-Isopropyl-6-methyl-4-pyrimidinol (IMPy) and 3,5,6-Trichloro-2-pyridinol (TPCy) in farm workers, sprayer operators, and non-exposed people as a control group were measured. The modified QuEChERS method was applied to extract samples and was measured using a gas chromatograph/nitrogen-phosphorus detector. The obtained results showed that the median concentrations of TCPy were 36.92-547.7 and 7.7-49.58 ng/mL for sprayer operators and farm workers, respectively. Moreover, the median concentrations of IMPy were 81.66-593.1 ng/mL for sprayer operators and 40.6-66.1 ng/mL for farm workers. The control group had no measurable metabolites. The IMPy level of 60% of sprayer operators was significantly higher (P ˂ 0.05) than the TCPy level. The analysis of variance highlighted the significant relationship (P ˂ 0.05) between the levels of each metabolite and the use of safety gloves, respiratory masks, safety goggles, working time per week, and type of insecticide exposure. Our findings revealed the need to measure the urinary metabolites of these insecticides in other exposed workers. Also, workers should be taught the impact of using personal protective equipment.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Solanum tuberosum , Cloropirifos/análisis , Diazinón/análisis , Agricultores , Granjas , Humanos , Insecticidas/análisis , Insecticidas/toxicidad , Nitrógeno , Plaguicidas/análisis , Fósforo
16.
J Environ Sci Health B ; 57(3): 165-175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175180

RESUMEN

Urine is one of the biological matrices most used for detecting human contamination, as it is representative and easily obtained via noninvasive sampling. This study proposes a fast, accurate, and ecological method based on liquid-liquid microextraction with low-temperature partition (µLLE/LTP). It was validated to determine nine pesticides (lindane, alachlor, aldrin, chlorpyrifos, dieldrin, endrin, DDT, bifenthrin, and permethrin) in human urine, in association with gas chromatography coupled with mass spectrometry (GC-MS). The technique was optimized through a factorial design. The best conditions for the simultaneous extraction of the analytes comprised the addition of 600 µL of water and 600 µL of acetonitrile (extracting solvent) to a 500-µL urine sample, followed by vortexing for 60 s. By freezing the samples for 4 h, it was possible to extract the pesticides and perform the extract clean-up simultaneously. The parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy were used to appraise the performance of the method. Good values of selectivity and linearity (R2 > 0.990), LOQ (0.39-1.02 µg L-1), accuracy (88-119% recovery), and precision (%CV ≤ 15%) were obtained. The µLLE/LTP-GC-MS method was applied to authentic urine samples collected from volunteers in Southeast Brazil.


Asunto(s)
Cloropirifos , Microextracción en Fase Líquida , Residuos de Plaguicidas , Plaguicidas , Cloropirifos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
17.
J Environ Sci Health B ; 57(2): 125-132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35060839

RESUMEN

In this study, a validation of a multi-residue analysis method was performed for the simultaneous analysis of chlorpyrifos (CHL), deltamethrin (DEL) and Imidacloprid (IMI) residues and some of their metabolites in maize silage, by LC MS/MS. Extraction was conducted with acetonitrile acidified with 1% acetic acid. To avoid the matrix effect, a matrix matched calibration was used. The method was validated according to the SANTE/12682/2019 Guidelines. Selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), trueness (recovery %) and precision (intra-day and inter-day) parameters were evaluated in line with the SANTE document. The linearities of all compounds were quite confident (R2≥ 0.98) and no interference was observed. The LOD and LOQ values were between 2.76 µg kg-1 to 53.61 µg kg-1 and 9.19 µg kg-1 to 178.71 µg kg-1, respectively. The recovery, repeatability RDSr and reproducibility RDSR values of compounds were calculated between 93.7-109.2%, 1-15%, and 1-13%, respectively. Consequently, results obtained with the evaluation of all parameters were found to be compatible with the SANTE validation criteria, so the method was reliable, effective and easy to use for the detection of insecticides and metabolites in maize silage with LC MS/MS.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Cloropirifos/análisis , Cromatografía Liquida/métodos , Neonicotinoides , Nitrilos , Nitrocompuestos , Residuos de Plaguicidas/análisis , Piretrinas , Reproducibilidad de los Resultados , Ensilaje/análisis , Espectrometría de Masas en Tándem/métodos , Zea mays/química
18.
Environ Monit Assess ; 194(2): 86, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018533

RESUMEN

This study aimed to investigate the acute and chronic hazard quotients of chlorpyrifos and diazinon for tomatoes in preharvest and postharvest conditions, and to evaluate the relationship between the main variables, including temperature and contact time and pesticide dissipation at different conditions using response surface methodology for the first time. The qualification analyses were conducted by a gas chromatography-tandem mass spectrometry. The Monte Carlo simulation technique was utilized to evaluate the variability and uncertainty and achieve more accurate results in the health risk assessment process. A quadratic model and the second-order polynomial analysis were employed to investigate the mutual effect of time and temperature on removing diazinon and chlorpyrifos. Based on findings, the chronic hazard quotient values of chlorpyrifos and diazinon residues ranged from 0.43 - 1.33 to 0.13 - 2.27 for boiling, 0.65 - 1.49 to 3.05 - 7.15 for room condition, and 0.63 - 1.92 to 3.28 - 7.47 for refrigerator condition, respectively. According to the Monte Carlo simulation, the hazard quotient and estimated daily intake values were more affected by the consumption rate, pesticide concentration, and body weight. The results of response surface methodology showed that the effect of temperature variations on the dissipation of both pesticides was more than that of contact time variations.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Solanum lycopersicum , Cloropirifos/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Residuos de Plaguicidas/análisis
19.
Ecotoxicol Environ Saf ; 217: 112208, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930769

RESUMEN

Understanding of pesticide persistence and diffusion on the fresh vegetables are extremely important in food safety and decontamination process. In this study, we examine the persistence and diffusion behaviour of chlorpyrifos pesticide in five different species of vegetables. The chlorpyrifos pesticide was spiked on the vegetable surfaces and the extracted samples from peel and tissues were subjected to Gas Chromatography equipped with a Flame Photometric Detector (GC-FPD). Further, the chlorpyrifos diffusion behaviour was compared with the osmotic potential, shear strength, cuticular chemical profile and microstructure of peel surface of vegetables. The persistence analysis results revealed that chlorpyrifos level was decreased in peel surface and diffusion rate was increased in inner tissue with respect to durations. Within 72 h exposure, chlorpyrifos reached 0.7 cm depth into the inner tissue of vegetables. Significant level of chlorpyrifos diffusion with P ≤ 0.05 was observed in beetroot (2.47%), khon khol (1.46%) and brinjal (0.92%) compared to cucumber and potato. Remarkably, there was no direct linkage between the chlorpyrifos diffusion rate, osmotic potential and toughness of vegetables. In addition, the Gas Chromatography Mass Spectroscopy (GC-MS) and Scanning Electron Microscopy (SEM) analyses revealed that epicuticular surface microstructure and chemical profiles were not correlated with the chlorpyrifos diffusion in all the tested vegetables. The study results concludes that chlorpyrifos diffusion is vegetable species specific and it is highly variable between the species.


Asunto(s)
Cloropirifos/metabolismo , Residuos de Plaguicidas/metabolismo , Verduras/metabolismo , Cloropirifos/análisis , Cromatografía de Gases/métodos , Cucumis sativus , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Cromatografía de Gases y Espectrometría de Masas/métodos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Solanum melongena , Verduras/química
20.
J Sci Food Agric ; 101(10): 4134-4141, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33368359

RESUMEN

BACKGROUND: Chlorpyrifos (CPF) is a broad-spectrum organophosphorus pesticide widely used to control tea geometrid (Ectropis oblique) and tea green leafhoppers (Empoasca pirisuga Matsumura) in tea trees. The major metabolite of CPF in water, plants, and animals is 3,5,6-trichloro-2-pyridinol, which is more toxic than CPF. However, the dissipation pattern of CPF in tea is unknown. RESULTS: An optimized QuEChERS sample preparation method combined with ultra-performance liquid chromatography-tandem mass spectrometry was applied to determine the residues of chlorpyrifos and its metabolite in tea during tea planting and green tea processing. During tea planting, the sum of chlorpyrifos and its metabolite dissipated rapidly with a half-life of 1.93 days for tea shoots. The residues of chlorpyrifos and its metabolite in made green tea were 96.89 and 35.88 µg kg-1 on the seventh day. The values for processing factors of chlorpyrifos and its metabolite were all less than 1, showing that each green tea manufacturing step was responsible for the reduction. The transfer rates of chlorpyrifos and its metabolite from made green tea to its infusion were 0.68-4.62% and 62.93-71.79%, respectively. CONCLUSION: The risk of chlorpyrifos was negligible to human health based on the hazard quotient, which was 7.4%. This study provides information relevant to the reasonable application of chlorpyrifos in tea planting and is potentially helpful for tea exporting and importing countries to establish harmonized maximum residue limits. © 2020 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Cloropirifos/análisis , Cloropirifos/metabolismo , Residuos de Plaguicidas/química , Residuos de Plaguicidas/metabolismo , Camellia sinensis/metabolismo , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA