Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.324
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917352

RESUMEN

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Asunto(s)
Organismos Acuáticos , Bacterias , Contaminantes Ambientales , Compuestos Organofosforados , Hidrolasas de Triéster Fosfórico , Organismos Acuáticos/enzimología , Bacterias/enzimología , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Océano Índico , Mar Mediterráneo , Compuestos Organofosforados/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Fósforo/metabolismo , Agua de Mar/microbiología
2.
Crit Rev Biochem Mol Biol ; 57(3): 305-332, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34937434

RESUMEN

Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.


Asunto(s)
Proteínas Bacterianas , Contaminantes Ambientales , Adenosina/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biopelículas , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Regulación Bacteriana de la Expresión Génica
3.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183371

RESUMEN

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Asunto(s)
Contaminantes Ambientales , Oryza , Fenantrenos , Contaminantes del Suelo , Sphingomonas , Cadmio/metabolismo , Oryza/metabolismo , Contaminantes Ambientales/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteómica , Contaminantes del Suelo/metabolismo , Fenantrenos/metabolismo , Suelo , Rizosfera
4.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459561

RESUMEN

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Animales , Femenino , Pez Cebra/genética , Pez Cebra/metabolismo , Embrión no Mamífero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología
5.
Exp Eye Res ; 239: 109755, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128749

RESUMEN

The threats of air pollution to human health have been gradually discovered, including its effects on eyes. The purpose of the study is to investigate the potential correlation between ocular surface exposure to black carbon and ocular surface structural damage as well as tear film dysfunction. To achieve this goal, 60 6-8-week-aged male BALB/C mice were randomly divided into 4 groups (n = 15). 0.5 mg/ml (group A), 1 mg/ml (group B), 5 mg/ml (group C) black carbon suspension droplets and PBS solution (group D) were used in the right eyes, 4 µl per time of three times per day. Tear break-up time, corneal fluorescein staining scores, and tear volume were assessed before treatment (day 0) and on days 4, 7, 10, and 14 after treatment. On day 14, the mice were sacrificed, and corneal and conjunctival tissues were collected for histological analysis. As the exposure time increased, there were no significant changes in the measured parameters from PBS-treated group of mice (P > 0.05). However, in the black carbon-treated group, there were significant decreases in tear film break-up time, significant increases in corneal fluorescein staining scores, and significant reductions in tear secretion (all P < 0.05). After 14 days, H&E staining of the corneal epithelium showed that in the PBS-treated group of mice, the corneal epithelial cells were neatly arranged, with no inflammatory cell infiltration, while in the black carbon-treated group, the corneal epithelium was significantly thickened, the basal cell arrangement was disrupted, the number of cell layers increased, and there was evidence of inflammatory cell infiltration. In the ultrastructure of the corneal epithelium, it could be observed that the black carbon-treated group had an increased amount of corneal epithelial cell detachment compared to the PBS-treated group, at the same time, the intercellular connections were looser, and there was a decrease in the number of microvilli and desmosomes in the black carbon-treated group. The results indicate that the ocular surface exposure to black carbon can result in a decrease in tear film stability and tear secretion in mice. Moreover, it can induce alterations in the corneal structure.


Asunto(s)
Síndromes de Ojo Seco , Contaminantes Ambientales , Masculino , Humanos , Animales , Ratones , Anciano , Contaminantes Ambientales/metabolismo , Ratones Endogámicos BALB C , Córnea/metabolismo , Fluoresceína/metabolismo , Lágrimas/metabolismo , Carbono/toxicidad , Carbono/metabolismo , Síndromes de Ojo Seco/metabolismo
6.
Environ Sci Technol ; 58(21): 9113-9124, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743028

RESUMEN

The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized quinone product 6PPD-quinone (6PPD-Q) in rubber have attracted attention due to the ecological risk that they pose. Both 6PPD and 6PPD-Q have been detected in various environments that humans cohabit. However, to date, a clear understanding of the biotransformation of 6PPD-Q and a potential biomarker for exposure in humans are lacking. To address this issue, this study presents a comprehensive analysis of the extensive biotransformation of 6PPD-Q across species, encompassing both in vitro and in vivo models. We have tentatively identified 17 biotransformation metabolites in vitro, 15 in mice in vivo, and confirmed the presence of two metabolites in human urine samples. Interestingly, different biotransformation patterns were observed across species. Through semiquantitative analysis based on peak areas, we found that almost all 6PPD-Q underwent biotransformation within 24 h of exposure in mice, primarily via hydroxylation and subsequent glucuronidation. This suggests a rapid metabolic processing of 6PPD-Q in mammals, underscoring the importance of identifying effective biomarkers for exposure. Notably, monohydroxy 6PPD-Q and 6PPD-Q-O-glucuronide were consistently the most predominant metabolites across our studies, highlighting monohydroxy 6PPD-Q as a potential key biomarker for epidemiological research. These findings represent the first comprehensive data set on 6PPD-Q biotransformation in mammalian systems, offering insights into the metabolic pathways involved and possible exposure biomarkers.


Asunto(s)
Benzoquinonas , Biomarcadores , Biotransformación , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Fenilendiaminas , Animales , Ratones , Exposición a Riesgos Ambientales/análisis , Fenilendiaminas/sangre , Fenilendiaminas/metabolismo , Fenilendiaminas/orina , Benzoquinonas/sangre , Benzoquinonas/metabolismo , Benzoquinonas/orina , Hidroxilación , Biomarcadores/metabolismo , Biomarcadores/orina , Goma/química , Masculino , Adulto Joven , Adulto , Ratas , Microsomas Hepáticos/metabolismo , Femenino , Contaminantes Ambientales/sangre , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/orina
7.
Environ Res ; 241: 117579, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944691

RESUMEN

A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Contaminantes Ambientales/metabolismo , Biodegradación Ambiental , Catálisis , Sustancias Peligrosas
8.
Environ Res ; 249: 118431, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346481

RESUMEN

Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.


Asunto(s)
Plantas , Humanos , Plantas/metabolismo , Ésteres/metabolismo , Organofosfatos/metabolismo , Contaminantes Ambientales/metabolismo
9.
Ecotoxicol Environ Saf ; 276: 116281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581907

RESUMEN

Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 µM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.


Asunto(s)
Glucurónidos , Glucuronosiltransferasa , Microsomas Hepáticos , Fenoles , Glucuronosiltransferasa/metabolismo , Humanos , Animales , Fenoles/toxicidad , Fenoles/metabolismo , Glucurónidos/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Perros , Ratas , Isoenzimas/metabolismo , Especificidad de la Especie
10.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340597

RESUMEN

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Asunto(s)
Contaminantes Ambientales , Oryza , Antioxidantes/metabolismo , Plantones , Oryza/metabolismo , Pentanoles/metabolismo , Pentanoles/farmacología , 1-Butanol/metabolismo , 1-Butanol/farmacología , Contaminantes Ambientales/metabolismo , Disulfuro de Glutatión/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Raíces de Plantas/metabolismo
11.
Ecotoxicology ; 33(4-5): 457-469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38097853

RESUMEN

Mercury (Hg) endangers human and wildlife health globally, primarily due to its release from artisanal small-scale gold mining (ASGM). During gold extraction, Hg is emitted into the environment and converted to highly toxic methylmercury by microorganisms. In Madre de Dios (MDD), Peru, ASGM dominates the economy and has transformed rainforests into expansive deforested areas punctuated by abandoned mining ponds. The aim of this study was to evaluate the use of bats as bioindicators for mercury pollution intensity in tropical terrestrial ecosystems impacted by ASGM. We collected 290 bat fur samples from three post-ASGM sites and one control site in Madre de Dios. Our results showed a wide Hg distribution in bats (0.001 to 117.71 mg/kg) strongly influenced by feeding habits. Insectivorous and piscivorous bats from ASGM sites presented elevated levels of Hg surpassing the mercury small mammal threshold for small mammals (10 mg/kg). We observed the highest reported fur mercury concentrations for insectivorous Neotropical bats reported to date (Rhynchonycteris naso, 117 mg/kg). Our findings further confirm that Hg emissions from ASGM are entering local food webs and exposing wildlife species at several trophic levels to higher levels of Hg than in areas not impacted by mining. We also found that three bat genera consistently showed increased Hg levels in ASGM sites relative to controls indicating potential usefulness as bioindicators of mercury loading in terrestrial ecosystems impacted by artisanal and small-scale gold mining.


Asunto(s)
Bioacumulación , Quirópteros , Ecosistema , Monitoreo del Ambiente , Oro , Mercurio , Minería , Animales , Quirópteros/metabolismo , Perú , Mercurio/análisis , Mercurio/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/análisis
12.
Arch Environ Contam Toxicol ; 86(4): 363-374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38762667

RESUMEN

Mercury (Hg) is an environmental contaminant that can negatively impact the health of humans and wildlife. Albatrosses and large petrels show some of the highest levels of Hg contamination among birds, with potential repercussions for reproduction and survival. Here, body feather total Hg (THg) concentrations were determined in breeding adults of five species of albatrosses and large petrels in the foraging guild at South Georgia during the mid-2010s. We tested the effects of species, sex and trophic ecology (inferred from stable isotopes) on THg concentrations and compared our results with published values from past decades. Feather THg concentrations differed significantly among species (range: 1.9-49.6 µg g-1 dw), and were highest in wandering albatrosses Diomedea exulans, intermediate in black-browed albatrosses Thalassarche melanophris and northern giant petrels Macronectes halli, and lowest in southern giant petrels M. giganteus and white-chinned petrels Procellaria aequinoctialis. Females were more contaminated than males in all species, potentially due to differences in distributions and diet composition. Across species, THg concentrations were not correlated with feather δ13C or δ15N values, implying that species effects (e.g., breeding and moulting frequencies) may be more important than trophic effects in explaining feather THg concentrations in this foraging guild. Within species, the only significant correlation was between THg and δ13C in wandering albatrosses, which could reflect higher Hg exposure in subtropical waters. Comparisons with THg concentrations from past studies, which reflect contamination from 10 to > 60 years ago, revealed considerable annual variation and some evidence for increases over time for wandering and black-browed albatrosses since before 1950 and from the late 1980s, respectively.


Asunto(s)
Aves , Monitoreo del Ambiente , Plumas , Mercurio , Plumas/química , Animales , Mercurio/análisis , Femenino , Masculino , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo
13.
J Environ Manage ; 351: 119674, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061098

RESUMEN

The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.


Asunto(s)
Contaminantes Ambientales , Microalgas , Contaminantes Químicos del Agua , Humanos , Contaminantes Ambientales/metabolismo , Aguas Residuales , Ecosistema , Agua/metabolismo , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Microalgas/metabolismo
14.
J Environ Manage ; 359: 120984, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678905

RESUMEN

The chronic lack of effective disposal of pollutants has resulted in the detection of a wide variety of EPs in the environment, with concentrations high enough to affect ecological health. Laccase, as a versatile oxidase capable of catalyzing a wide range of substrates and without producing toxic by-products, is a potential candidate for the biodegradation of pollutants. Immobilization can provide favorable protection for free laccase, improve the stability of laccase in complex environments, and greatly enhance the reusability of laccase, which is significant in reducing the cost of industrial applications. This study introduces the properties of laccase and subsequently elaborate on the different support materials for laccase immobilization. The research advances in the degradation of EDs, PPCPs, and PAHs by immobilized laccase are then reviewed. This review provides a comprehensive understanding of laccase immobilization, as well as the advantages of various support materials, facilitating the development of more economical and efficient immobilization systems that can be put into practice to achieve the green degradation of EPs.


Asunto(s)
Biodegradación Ambiental , Enzimas Inmovilizadas , Lacasa , Lacasa/metabolismo , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Contaminantes Ambientales/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo
15.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731512

RESUMEN

Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Reactores Biológicos , Sustancias Peligrosas/metabolismo
16.
Toxicol Mech Methods ; 34(3): 256-261, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964616

RESUMEN

In recent years one of the most striking results of over-population and consumption activities in the world is the rapid increase in environmental pollutants. Environmental pollutants, one of the harmful consequences of technological and modern life, threaten the health of people and other living organisms. In this study, we aimed to determine the effects of sodium omadine (NaOM) on superoxide dismutase enzyme (SOD) activity as an antioxidant and on 8-OHdG levels as oxidative DNA damage in zebrafish. Zebrafish, obtained from the aquarium fish producer, were stocked in experimental aquariums to ensure their adaptation period to the experimental conditions 15 days before the experiment. The fish were exposed to 1 ug/L and 5 ug/L concentrations of NaOM for 24, 72, and 96 h. SOD enzyme activity (U/100 mg tissue) and 8-OHdG (pg/100 mg tissue) were measured using commercial kits. The statistically significant differences in tissue SOD levels and data for DNA damage between the groups were determined as time and dose-dependent (p < 0.05). Biocidal products are environmental pollutants that cause changes in antioxidant enzyme activities, especially in non-target organisms. Marine pollution and the degradation of ecosystems directly affect people, and the results of the study offer awareness of health problems, environmental pollution, and marine pollution.


Asunto(s)
Contaminantes Ambientales , Piridinas , Tionas , Contaminantes Químicos del Agua , Humanos , Animales , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Catalasa/metabolismo , Sodio/metabolismo , Contaminantes Ambientales/metabolismo , Ecosistema , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
17.
World J Microbiol Biotechnol ; 40(8): 247, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904858

RESUMEN

Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.


Asunto(s)
Bacterias , Biodegradación Ambiental , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Isomerismo , Plastificantes/metabolismo , Contaminantes Ambientales/metabolismo , Redes y Vías Metabólicas , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química
18.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668960

RESUMEN

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Contaminantes Ambientales , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Mutágenos/toxicidad , Mutágenos/metabolismo , ADN de Hongos/genética , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo
19.
J Bioenerg Biomembr ; 55(1): 79-89, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637735

RESUMEN

Exposure to the environmental pollutant lead (Pb) has been linked to Alzheimer's disease (AD), in which mitochondrial dysfunction is a pathological consequence of neuronal degeneration. The toxicity of Pb in combination with ß-amyloid peptides (1-40) and (25-35) causes selective death in neuronal cells. However, the precise mechanism through which Pb induces Alzheimer's disease, particularly mitochondrial damage, is unknown. Changes in mitochondrial mass, membrane potential, mitochondrial complex activities, mitochondrial DNA and oxidative stress were examined in neuronal cells of human origin exposed to Pb and ß-amyloid peptides (1-40) and (25-35) individually and in different combinations. The results showed depolarization of mitochondrial membrane potential, decrease in mitochondrial mass, ATP levels and mtDNA copy number in Pb and ß-amyloid peptides (1-40) and (25-35) exposed cells. Also, significant reductions in the expression of mitochondrial electron transport chain (ETC) complex proteins (ATP5A, COXIV, UQCRC2, SDHB, NDUFS3), as well as down regulation of ETC complex gene expressions such as COXIV, ATP5F1 and NDUFS3 and antioxidant gene expressions like MnSOD and Gpx4 were observed in exposed cells. Furthermore, Pb and ß-amyloid peptides exposure resulted in elevated mitochondrial malondialdehyde levels and a decrease in mitochondrial GSH levels. Our findings suggest that Pb toxicity could be one of the causative factors for the mitochondrial dysfunction and oxidative stress in Alzheimer's disease progression.


Asunto(s)
Enfermedad de Alzheimer , Contaminantes Ambientales , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Plomo/metabolismo , Contaminantes Ambientales/metabolismo , Estrés Oxidativo/fisiología , Mitocondrias/metabolismo
20.
Biotechnol Bioeng ; 120(10): 3001-3012, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37209207

RESUMEN

Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.


Asunto(s)
Contaminantes Ambientales , Geobacter , Geobacter/genética , Contaminantes Ambientales/metabolismo , Transporte de Electrón , Expresión Génica , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA