Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2307513120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549299

RESUMEN

The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.


Asunto(s)
Demencia Vascular , Hipertensión , Ratones , Humanos , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Arterias Cerebrales/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo
2.
Curr Atheroscler Rep ; 26(8): 435-449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814418

RESUMEN

PURPOSE OF REVIEW: Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease.Hypercholesterolemia may increase the risk of dementia, but the association between cholesterol and cognitive function is very complex. From the perspective of peripheral and brain cholesterol, we review the relationship between hypercholesterolemia and increased risk of VaD and how the use of lipid-lowering therapies affects cognition. RECENT FINDINGS: Epidemiologic studies show since 1980, non-HDL-C levels of individuals has increased rapidly in Asian countries.The study has suggested that vascular risk factors increase the risk of VaD, such as disordered lipid metabolism. Dyslipidemia has been found to interact with chronic cerebral hypoperfusion to promote inflammation resulting in cognitive dysfunction in the brain.Hypercholesterolemia may be a risk factor for VaD. Inflammation could potentially serve as a link between hypercholesterolemia and VaD. Additionally, the potential impact of lipid-lowering therapy on cognitive function is also worth considering. Finding strategies to prevent and treat VaD is critical given the aging of the population to lessen the load on society. Currently, controlling underlying vascular risk factors is considered one of the most effective methods of preventing VaD. Understanding the relationship between abnormal cholesterol levels and VaD, as well as discovering potential serum biomarkers, is important for the early prevention and treatment of VaD.


Asunto(s)
Colesterol , Demencia Vascular , Hipercolesterolemia , Humanos , Demencia Vascular/etiología , Demencia Vascular/epidemiología , Demencia Vascular/metabolismo , Hipercolesterolemia/complicaciones , Hipercolesterolemia/epidemiología , Factores de Riesgo , Colesterol/metabolismo , Colesterol/sangre
3.
Brain Behav Immun ; 119: 818-835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735403

RESUMEN

Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Monocitos , Infarto del Miocardio , Sustancia Blanca , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/complicaciones , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Monocitos/metabolismo , Ratones , Masculino , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Receptores CCR2/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Demencia Vascular/metabolismo , Demencia Vascular/patología , Oligodendroglía/metabolismo
4.
Neurochem Res ; 49(7): 1720-1734, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520637

RESUMEN

Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1ß and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Demencia Vascular , Flavonoides , Ratas Sprague-Dawley , Receptor trkB , Transducción de Señal , Animales , Flavonoides/farmacología , Flavonoides/administración & dosificación , Flavonoides/uso terapéutico , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cognición/efectos de los fármacos , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratas , Polietilenglicoles/química , Quitosano/química , Administración Intranasal , Sistema de Administración de Fármacos con Nanopartículas , Poliésteres
5.
Neurochem Res ; 49(10): 2821-2841, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39012534

RESUMEN

Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Microglía , Sustancia Blanca , Animales , Microglía/metabolismo , Microglía/patología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Masculino , Ratas , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Análisis de la Célula Individual , Ratas Sprague-Dawley , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Inflamación/metabolismo , Inflamación/patología , Análisis de Secuencia de ARN/métodos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/genética
6.
Exp Brain Res ; 242(8): 1841-1850, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842755

RESUMEN

Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.


Asunto(s)
Demencia Vascular , Mitocondrias , Estrés Oxidativo , Piracetam , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Humanos , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Piracetam/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología , Glucosa/metabolismo , Relación Dosis-Respuesta a Droga
7.
Biochemistry (Mosc) ; 89(4): 711-725, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831507

RESUMEN

Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Hipertensión , Animales , Humanos , Ratas , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Hipertensión/metabolismo , Neurogénesis , Estrés Oxidativo , Ratas Endogámicas SHR
8.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551405

RESUMEN

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Asunto(s)
Demencia Vascular , Lignanos , Neuroblastoma , Compuestos Policíclicos , Ratas , Humanos , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Aprendizaje por Laberinto/fisiología , Hipoxia , Cognición , Hipocampo , Oxígeno/farmacología , Ciclooctanos
9.
Drug Dev Res ; 85(7): e70001, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39440407

RESUMEN

Dementia develops as a result of multiple factors, including cerebrovascular disease which is called vascular dementia (VD). Histone-3 lysine-9 dimethylation (H3K9me2) broadly increases during VD and inhibits neuroprotective gene expressions. So, we aimed to determine how H3K9me2 inhibitor (BIX01294) affects neuronal damage in VD. An in vivo model of VD was used followed by BIX01294 treatment. Behavioral tests, hematoxylin, and eosin (H&E), Congo red, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were carried out. Hippocampal phosphorylated cyclic-AMP responsive element binding protein (p-CREB), c-fos, brain-derived neurotrophic factor (BDNF), and H3K9me2, were detected by western blot analysis technique. Neurological deficit and anxiety-related behavior significantly reduced in the treatment group compared to the VD group (p < 0.05). BIX01294 improved spatial and passive avoidance memory (p < 0.01 and p < 0.05, respectively) compared to the VD group. Treatment with BIX01294 restored the level of p-CREB/CREB ratio (p < 0.05), cfos (p < 0.01), BDNF (p < 0.01), and suppressed H3K9me2 (p < 0.001) when compared to the VD group. BIX01294 microinjection reduced the apoptosis level in TUNEL staining (p < 0.05), and raised neural cell count in H&E staining (p < 0.01); amyloid beta accumulation significantly decreased in the treatment group (p < 0.05) compared to the VD group. In conclusion, long-term treatment with a low dose of BIX01294 can prevent the progression of neuronal loss in VD model by raising the expression of neurotrophic factors, and reducing the apoptosis level.


Asunto(s)
Demencia Vascular , Modelos Animales de Enfermedad , Histonas , Neuronas , Animales , Masculino , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Histonas/metabolismo , Metilación/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratas , Ratas Sprague-Dawley , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Azepinas
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673986

RESUMEN

The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.


Asunto(s)
Ritmo Circadiano , Demencia Vascular , Estrés Oxidativo , Animales , Humanos , Relojes Circadianos/genética , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/fisiopatología , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida
11.
Synapse ; 77(4): e22268, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36941024

RESUMEN

Vascular dementia (VaD) is a prevalent cause of dementia after Alzheimer's disease. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-Evs) are critical for VaD treatment. We explored the mechanism of hUCMSC-Evs in VaD. VaD rat model was established by bilateral common carotid artery ligation and hUCMSC-Evs were extracted. VaD rats were injected with Evs through the tail vein. Rat neurological scores, neural behaviors, memory and learning abilities, brain tissue pathological changes, and neurological impairment were evaluated by Zea-Longa method, Morris water maze tests, HE staining, and ELISA (through acetylcholine [ACH] and dopamine [DA] assessment). Microglia M1/M2 polarization was detected by immunofluorescence staining. Pro-/anti-inflammatory factor levels in brain tissue homogenate, oxidative stress-related indicators, and p-PI3K, PI3K, p-AKT, AKT, and Nrf2 protein levels were determined by ELISA, kits, and Western blot. VaD rats were jointly treated with PI3K phosphorylation inhibitor Ly294002 and hUCMSC-Evs. VaD rats manifested increased neurological function injury scores, decreased cognitive function and learning ability, abnormal brain structure, obvious inflammatory infiltration, diminished ACH and DA levels, increased microglial cells and M1-polarized cells, M1/M2 polarization ratio, inflammation, and oxidative stress. hUCMSC-Evs alleviated the neurological damage of VaD rats, inhibited M1 polarization, inflammation, and oxidative stress of microglial cells in brain tissues of VaD rats, and activated the PI3K/AKT/Nrf2 pathway. Ly294002 partially averted the effects of hUCMSC-Evs on microglial polarization, inflammation, and oxidative stress. Briefly, hUCMSC-Evs activated the PI3K/AKT/Nrf2 pathway and inhibited microglial M1 polarization, inflammation, and oxidative stress, thus protecting VaD rat nerve functions.


Asunto(s)
Demencia Vascular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Demencia Vascular/terapia , Demencia Vascular/metabolismo , Inflamación/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo
12.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985572

RESUMEN

Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aß1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aß1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.


Asunto(s)
Demencia Vascular , Ratas , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Peróxido de Hidrógeno/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Hipocampo/metabolismo
13.
Am J Physiol Endocrinol Metab ; 322(1): E24-E33, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747203

RESUMEN

Vascular contributions to cognitive impairment and dementia (VCID) is a spectrum of cognitive deficits caused by cerebrovascular disease, for which insulin resistance is a major risk factor. A major cause of VCID is chronic cerebral hypoperfusion (CCH). Under stress, sustained hypothalamic-pituitary-adrenal axis (HPA) activation can result in insulin resistance. Little is known about the effects of CCH on the HPA axis. We hypothesized that CCH causes sustained HPA activation and insulin resistance. Male rats were subjected to bilateral carotid artery stenosis (BCAS) for 12 wk to induce CCH and VCID. BCAS reduced cerebral blood flow and caused memory impairment. Plasma adrenocorticotropic hormone was increased in the BCAS rats (117.2 ± 9.6 vs. 88.29 ± 9.1 pg/mL, BCAS vs. sham, P = 0.0236), as was corticosterone (220 ± 21 vs. 146 ± 18 ng/g feces, BCAS vs. sham, P = 0.0083). BCAS rats were hypoglycemic (68.1 ± 6.1 vs. 76.5 ± 5.9 mg/dL, BCAS vs. sham, P = 0.0072), with increased fasting insulin (481.6 ± 242.6 vs. 97.94 ± 40.02 pmol/L, BCAS vs. sham, P = 0.0003) indicating that BCAS rats were insulin resistant [homeostasis model assessment of ß-cell function-insulin resistance (HOMA-IR): 11.71 ± 6.47 vs. 2.62 ± 0.93; BCAS vs. control, P = 0.0008]. Glucose tolerance tests revealed that BCAS rats had lower blood glucose areas under the curve (AUCs) than controls (250 ± 12 vs. 326 ± 20 mg/dL/h, BCAS vs. sham, P = 0.0075). These studies indicate that CCH causes sustained activation of the HPA and results in insulin resistance, a condition that is expected to worsen VCID.NEW & NOTEWORTHY Cerebrovascular disease and insulin resistance are two major risk factors for the development of dementia. Here, we demonstrate that chronic cerebral hypoperfusion results in glucocorticoid excess and hyperinsulinemia. This study indicates that chronic cerebral hypoperfusion, glucocorticoid excess, and insulin resistance participate in a detrimental cycle that could exacerbate cerebral vascular disease and dementia.


Asunto(s)
Estenosis Carotídea/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Hiperinsulinismo/etiología , Hiperinsulinismo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Conducta Animal , Glucemia/análisis , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Locomoción , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley
14.
Neurobiol Dis ; 168: 105717, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35385769

RESUMEN

Chronic psychological stress affects brain regions involved in memory such as the hippocampus and accelerates age-related cognitive decline, including in Alzheimer's disease and vascular dementia. However, little is known about how chronic stress impacts hippocampal vascular function that is critically involved in maintaining neurocognitive health that could contribute to stress-related memory dysfunction. Here, we used a novel experimental rat model that mimics the neuroendocrine and cardiovascular aspects of chronic stress to determine how the neuroendocrine components of the stress response affect hippocampal function. We studied both male and female rats to determine potential sex differences in the susceptibility of the hippocampus and its vasculature to neuroendocrine stress-induced dysfunction. We show that activation of neuroendocrine stress pathways impaired the vasoreactivity of hippocampal arterioles to mediators involved in coupling neuronal activity with local blood flow that was associated with impaired memory function. Interestingly, we found more hippocampal arteriolar dysfunction and scarcer hippocampal microvasculature in male compared to female rats that was associated with greater memory impairment, suggesting the male sex may be at increased risk of neuroendocrine-derived hippocampal dysfunction during chronic stress. Overall, this study revealed the therapeutic potential of targeting hippocampal arterioles to prevent or slow memory decline in the setting of prolonged and/or unavoidable stress.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Enfermedad de Alzheimer/metabolismo , Animales , Demencia Vascular/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Neuronas/metabolismo , Ratas
15.
Neurobiol Dis ; 171: 105800, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35752392

RESUMEN

OBJECTIVE: The present study aimed to determine whether peripheral blood neural cell adhesion molecule (NCAM)/amphiphysin 1 dual-labeled exosomal proteins and microRNAs (miRs) might serve as a marker for the early diagnosis of Alzheimer's disease (AD). METHODS: This observational, retrospective, multicenter study used a two-stage design conducted in Beijing and Shanghai, China. The subjects included 76 patients with subjective cognitive decline (SCD), 80 with amnestic mild cognitive impairment (aMCI), 76 with dementia of Alzheimer's type (AD), 40 with vascular dementia (VaD), and 40 controls in the discovery stage. These results were confirmed in the verification stage. The levels of Aß42, Aß42/40, T-Tau, P-T181-tau, neurofilament light chain (NfL), and miR-29c-3p in peripheral blood amphiphysin 1 single-labeled and NCAM/amphiphysin 1 dual-labeled exosomes were captured and detected by immunoassay. RESULTS: In the discovery stage, the levels of Aß42 and miR-29c-3p in peripheral blood NCAM/amphiphysin 1 dual-labeled exosome of the SCD group were significantly higher than those in control and VaD groups (all P < 0.05). The verification stage further confirmed the results of the discovery stage. Plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p showed a good diagnostic performance. The NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had the highest AUC for diagnosis of SCD. The levels of Aß42, Aß42/40, Tau, P-T181-tau, and miR-29c-3p in peripheral blood exosomes were correlated to those in CSF (all P < 0.05). The combination of exosomal biomarkers had slightly higher diagnostic efficiency than the individual biomarkers and that the exosomal biomarkers had the same diagnostic power as the CSF biomarkers. CONCLUSION: The plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had potential advantages in the diagnosis of SCD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia Vascular , Exosomas , MicroARNs , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores/metabolismo , China , Disfunción Cognitiva/metabolismo , Demencia Vascular/metabolismo , Exosomas/metabolismo , Humanos , MicroARNs/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Estudios Retrospectivos
16.
Curr Diab Rep ; 22(8): 333-340, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737273

RESUMEN

PURPOSE OF REVIEW: Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impairment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed. RECENT FINDINGS: Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction. While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, replication in patients still needs to be demonstrated.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Síndrome Metabólico , Animales , Disfunción Cognitiva/etiología , Demencia Vascular/complicaciones , Demencia Vascular/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/patología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 41(1): 97-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054394

RESUMEN

Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Envejecimiento Cognitivo/psicología , Disfunción Cognitiva/tratamiento farmacológico , Demencia Vascular/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/agonistas , Nootrópicos/uso terapéutico , Factores de Edad , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Demencia Vascular/psicología , Modelos Animales de Enfermedad , Humanos , Terapia Molecular Dirigida , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
18.
Exp Cell Res ; 407(1): 112739, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343559

RESUMEN

Apelin receptor (APJ), a member of family A of the G protein-coupled receptors (GPCRs), is a potential pharmaceutical target for diseases of the nervous system. Our previous work revealed that human APJ can form a homodimer that has different functional characteristics than the monomer. To investigate the effects of APJ homodimers on neuroprotection in vascular dementia (VD), we established VD model in rats and treated the animals by injecting apelin-13 into the lateral ventricle. In addition, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in SH-SY5Y cells treated with apelin-13. After apelin-13 stimulation in the VD rat, the level of APJ and APJ homodimer were elevated. Furthermore, APJ homodimer decreased the level of cleaved caspase-3 and cleaved caspase-9 via the Gαi3 and Gαq signaling pathway, thereby increasing the number of neurons and inhibiting apoptosis. Consequently, APJ homodimers may serve as a unique mechanism for neuroprotection against VD and provide new pharmaceutical targets for VD.


Asunto(s)
Receptores de Apelina/metabolismo , Apoptosis/efectos de los fármacos , Demencia Vascular/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/farmacología , Transducción de Señal/efectos de los fármacos , Apoptosis/fisiología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Demencia Vascular/metabolismo , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
19.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408867

RESUMEN

Small vessel disease (SVD) is one of the most frequent pathological conditions which lead to dementia. Biochemical and neuroimaging might help correctly identify the clinical diagnosis of this relevant brain disease. The microvascular alterations which underlie SVD have common origins, similar cognitive outcomes, and common vascular risk factors. Nevertheless, the arteriolosclerosis process, which underlines SVD development, is based on different mechanisms, not all completely understood, which start from a chronic hypoperfusion state and pass through a chronic brain inflammatory condition, inducing a significant endothelium activation and a consequent tissue remodeling action. In a recent review, we focused on the pathophysiology of SVD, which is complex, involving genetic conditions and different co-morbidities (i.e., diabetes, chronic hypoxia condition, and obesity). Currently, many points still remain unclear and discordant. In this paper, we wanted to focus on new biomarkers, which can be the expression of the endothelial dysfunction, or of the oxidative damage, which could be employed as markers of disease progression or for future targets of therapies. Therefore, we described the altered response to the endothelium-derived nitric oxide-vasodilators (ENOV), prostacyclin, C-reactive proteins, and endothelium-derived hyperpolarizing factors (EDHF). At the same time, due to the concomitant endothelial activation and chronic neuroinflammatory status, we described hypoxia-endothelial-related markers, such as HIF 1 alpha, VEGFR2, and neuroglobin, and MMPs. We also described blood-brain barrier disruption biomarkers and imaging techniques, which can also describe perivascular spaces enlargement and dysfunction. More studies should be necessary, in order to implement these results and give them a clinical benefit.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia Vascular , Enfermedades Vasculares , Biomarcadores/metabolismo , Encéfalo/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Demencia Vascular/metabolismo , Humanos , Hipoxia/metabolismo , Enfermedades Vasculares/metabolismo
20.
J Cell Mol Med ; 25(15): 7418-7425, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216182

RESUMEN

We previously showed a hydroxamic acid-based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen-glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation-mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi-compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Demencia Vascular/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Receptores AMPA/metabolismo , Animales , Arteriopatías Oclusivas/complicaciones , Arterias Carótidas/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA