Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161.748
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 34: 421-47, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26907213

RESUMEN

Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.


Asunto(s)
Hipersensibilidad/fisiopatología , Inflamación , Neuroinmunomodulación , Dolor/fisiopatología , Animales , Autoinmunidad , Comunicación Celular , Citocinas/metabolismo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuropéptidos/metabolismo
2.
Cell ; 185(22): 4046-4048, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306732

RESUMEN

Pain-sensing neurons detect environmental insults and tissue injury, driving avoidance behavior and the local release of neuropeptides. Two related papers in this issue of Cell report that gut-innervating pain neurons sense bacterial presence to both shape the constituents of the gut microbiome and protect against excessive inflammation.


Asunto(s)
Microbioma Gastrointestinal , Neuropéptidos , Humanos , Dolor , Inflamación , Emociones
3.
Cell ; 185(23): 4251-4253, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368303

RESUMEN

Different opioid ligands can result in biased µ-opioid signaling, differentially activating signal cascades which produce analgesia, tolerance, or adverse effects. In this issue of Cell, Xu et al. used cryo-EM and computational simulations to understand how different µ-opioid receptor selective-ligands interact with key residues to produce downstream signaling.


Asunto(s)
Analgésicos Opioides , Dolor , Humanos , Analgésicos Opioides/efectos adversos , Ligandos , Transducción de Señal , Receptores Opioides mu/metabolismo
4.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806708

RESUMEN

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Asunto(s)
Nociceptores , Dolor , Animales , Ratones , Dolor/inmunología , Dolor/metabolismo , Nociceptores/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Inflamación/inmunología , Masculino , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Trombospondina 1/metabolismo , Trombospondina 1/genética , Piel/inmunología , Piel/metabolismo , Piel/patología , Zimosan , Análisis de la Célula Individual , Neuroinmunomodulación , Perfilación de la Expresión Génica , Neutrófilos/inmunología , Neutrófilos/metabolismo
5.
Nat Immunol ; 24(3): 439-451, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36703006

RESUMEN

Cross-talk between peripheral neurons and immune cells is important in pain sensation. We identified Snx25 as a pain-modulating gene in a transgenic mouse line with reduced pain sensitivity. Conditional deletion of Snx25 in monocytes and macrophages, but not in peripheral sensory neurons, in mice (Snx25cKO mice) reduced pain responses in both normal and neuropathic conditions. Bone marrow transplantation using Snx25cKO and wild-type mice indicated that macrophages modulated pain sensitivity. Expression of sorting nexin (SNX)25 in dermal macrophages enhanced expression of the neurotrophic factor NGF through the inhibition of ubiquitin-mediated degradation of Nrf2, a transcription factor that activates transcription of Ngf. As such, dermal macrophages set the threshold for pain sensitivity through the production and secretion of NGF into the dermis, and they may cooperate with dorsal root ganglion macrophages in pain perception.


Asunto(s)
Macrófagos , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Ratones Transgénicos , Monocitos , Factor de Crecimiento Nervioso/metabolismo , Dolor , Nexinas de Clasificación
6.
Cell ; 180(5): 824-826, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142674

RESUMEN

Unrelieved pain is a widespread condition that fuels the opioid crisis. Molecules that initiate painful sensations are intensively sought as therapeutic targets for improved pain interventions. In this issue of Cell, Beaulieu-Laroche et al. (2020) describe TACAN, a putative ion channel that mediates mechanical pain in mice.


Asunto(s)
Canales Iónicos , Dolor , Animales , Ratones , Tacto
7.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084332

RESUMEN

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Asunto(s)
Canales Iónicos/fisiología , Mecanotransducción Celular/genética , Nociceptores/metabolismo , Dolor/genética , Tacto/genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Canales Iónicos/genética , Lípidos/genética , Ratones , Ratones Noqueados , Dolor/fisiopatología , Técnicas de Placa-Clamp , Estrés Mecánico , Tacto/fisiología
8.
Cell ; 183(1): 284-284.e1, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007264

RESUMEN

Ophthalmic, maxillary, and mandibular branches of the trigeminal nerve provide sensory innervation to orofacial tissues. Trigeminal sensory neurons respond to a diverse array of sensory stimuli to generate distinct sensations, including thermosensation, mechanosensation, itching, and pain. These sensory neurons also detect the distinct sharpness or pungency of many foods and beverages. This SnapShot highlights the transduction ion channels critical to orofacial sensation.


Asunto(s)
Sensación/fisiología , Nervio Trigémino/anatomía & histología , Nervio Trigémino/fisiología , Nervios Craneales/anatomía & histología , Nervios Craneales/fisiología , Humanos , Neuronas Aferentes/fisiología , Dolor/fisiopatología
9.
Cell ; 178(6): 1279-1281, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474364

RESUMEN

In this issue of Cell, King et al. (2019) have discovered a cell penetrating peptide isolated from the venom of the Australian Black Rock scorpion that activates the TRPA1 receptor in a unique way to induce pain. Their findings offer new insights into how animals evolved venoms to target specific ion channel functions.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Australia , Dolor , Péptidos
10.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712871

RESUMEN

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Asunto(s)
Células Asesinas Naturales/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regeneración Nerviosa , Neuronas/citología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Dolor , Traumatismos de los Nervios Periféricos/inmunología , Enfermedades del Sistema Nervioso Periférico , Nervio Ciático , Células Receptoras Sensoriales/metabolismo
11.
Cell ; 173(1): 140-152.e15, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570993

RESUMEN

Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.


Asunto(s)
Neuronas/metabolismo , Dolor/patología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Analgésicos Opioides/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Conducta Animal/efectos de los fármacos , Dieta , Conducta Alimentaria/efectos de los fármacos , Formaldehído/toxicidad , Glutamato Descarboxilasa/metabolismo , Locomoción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Neuronas/efectos de los fármacos , Dolor/etiología , Dolor/metabolismo , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal
12.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754819

RESUMEN

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Asunto(s)
Neuronas/metabolismo , Neutrófilos/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/administración & dosificación , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caspasa 1/deficiencia , Caspasa 1/genética , Diterpenos/farmacología , Fascitis Necrotizante/etiología , Fascitis Necrotizante/patología , Fascitis Necrotizante/veterinaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neutrófilos/inmunología , Dolor/etiología , Transducción de Señal , Piel/metabolismo , Piel/patología , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/veterinaria , Streptococcus pyogenes/metabolismo , Estreptolisinas/inmunología , Estreptolisinas/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
13.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525759

RESUMEN

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Animales , Encéfalo/fisiología , Cromosomas Humanos X , Ritmo Circadiano , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Edición Génica , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Mutación , Dolor , Síndrome de Rett/fisiopatología , Sueño , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Transcriptoma
14.
Annu Rev Neurosci ; 46: 167-189, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36917820

RESUMEN

Treatment outcomes are strongly influenced by expectations, as evidenced by the placebo effect. Meta-analyses of clinical trials reveal that placebo effects are strongest in pain, indicating that psychosocial factors directly influence pain. In this review, I focus on the neural and psychological mechanisms by which instructions, learning, and expectations shape subjective pain. I address new experimental designs that help researchers tease apart the impact of these distinct processes and evaluate the evidence regarding the neural mechanisms by which these cognitive factors shape subjective pain. Studies reveal that expectations modulate pain through parallel circuits that include both pain-specific and domain-general circuits such as those involved in affect and learning. I then review how expectations, learning, and verbal instructions impact clinical outcomes, including placebo analgesia and responses to pharmacological treatments, and discuss implications for future work.


Asunto(s)
Analgesia , Motivación , Humanos , Dolor/tratamiento farmacológico , Analgesia/psicología , Aprendizaje , Efecto Placebo
15.
Cell ; 162(2): 363-374, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186190

RESUMEN

Animals learn to avoid harmful situations by associating a neutral stimulus with a painful one, resulting in a stable threat memory. In mammals, this form of learning requires the amygdala. Although pain is the main driver of aversive learning, the mechanism that transmits pain signals to the amygdala is not well resolved. Here, we show that neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus are critical for relaying pain signals to the central nucleus of amygdala and that this pathway may transduce the affective motivational aspects of pain. Genetic silencing of CGRP neurons blocks pain responses and memory formation, whereas their optogenetic stimulation produces defensive responses and a threat memory. The pain-recipient neurons in the central amygdala expressing CGRP receptors are also critical for establishing a threat memory. The identification of the neural circuit conveying affective pain signals may be pertinent for treating pain conditions with psychiatric comorbidities.


Asunto(s)
Amígdala del Cerebelo/fisiología , Vías Nerviosas , Neuronas/fisiología , Dolor/fisiopatología , Animales , Conducta Animal , Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Condicionamiento Psicológico , Aprendizaje , Núcleos Parabraquiales/fisiología , Precursores de Proteínas/genética
16.
Cell ; 160(4): 759-770, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679765

RESUMEN

Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.


Asunto(s)
Comunicación Autocrina , Neuronas/metabolismo , Dolor/metabolismo , Receptores de GABA-B/metabolismo , Canales Catiónicos TRPV/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Células Cultivadas , Retroalimentación , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
17.
Nature ; 625(7995): 557-565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172636

RESUMEN

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Asunto(s)
Condrocitos , Canal de Sodio Activado por Voltaje NAV1.7 , Osteoartritis , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Progresión de la Enfermedad , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/deficiencia , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Osteoartritis/complicaciones , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Dolor/complicaciones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
18.
Nature ; 626(7997): 136-144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267578

RESUMEN

Humans and animals exhibit various forms of prosocial helping behaviour towards others in need1-3. Although previous research has investigated how individuals may perceive others' states4,5, the neural mechanisms of how they respond to others' needs and goals with helping behaviour remain largely unknown. Here we show that mice engage in a form of helping behaviour towards other individuals experiencing physical pain and injury-they exhibit allolicking (social licking) behaviour specifically towards the injury site, which aids the recipients in coping with pain. Using microendoscopic imaging, we found that single-neuron and ensemble activity in the anterior cingulate cortex (ACC) encodes others' state of pain and that this representation is different from that of general stress in others. Furthermore, functional manipulations demonstrate a causal role of the ACC in bidirectionally controlling targeted allolicking. Notably, this behaviour is represented in a population code in the ACC that differs from that of general allogrooming, a distinct type of prosocial behaviour elicited by others' emotional stress. These findings advance our understanding of the neural coding and regulation of helping behaviour.


Asunto(s)
Conducta Animal , Empatía , Giro del Cíngulo , Conducta de Ayuda , Dolor , Conducta Social , Animales , Ratones , Empatía/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Conducta Animal/fisiología , Heridas y Lesiones , Habilidades de Afrontamiento , Estrés Psicológico , Aseo Animal
19.
Annu Rev Neurosci ; 44: 1-25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236890

RESUMEN

Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.


Asunto(s)
Individualidad , Dolor , Humanos , Dolor/genética
20.
Cell ; 159(6): 1417-1432, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25467445

RESUMEN

Pain information processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aß mechanoreceptors, with Aß inputs gated through feed-forward activation of spinal inhibitory neurons (INs). Here, we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) include T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent INs, which are necessary to gate Aß fibers from activating SOM(+) neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aß mechanoreceptors, together with spinal SOM(+) excitatory and Dyn(+) inhibitory neurons, form a microcircuit that transmits and gates mechanical pain. PAPERCLIP:


Asunto(s)
Neuronas/fisiología , Dolor/metabolismo , Médula Espinal/fisiología , Animales , Dinorfinas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Percepción del Dolor , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA