Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550.773
Filtrar
Más filtros

Colección Odontología Uruguay
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424470

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Microglía/inmunología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750318

RESUMEN

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Asunto(s)
Enfermedades Neuroinflamatorias , Neuroprotección , Humanos , Animales , Encéfalo , Proteínas del Sistema Complemento , Plasticidad Neuronal/fisiología , Microglía/fisiología
3.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990209

RESUMEN

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Encéfalo , Disbiosis , Humanos , Neuroinmunomodulación
4.
Annu Rev Immunol ; 39: 251-277, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33556248

RESUMEN

The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.


Asunto(s)
Sistema Nervioso Central , Microglía , Animales , Encéfalo , Humanos , Macrófagos , Células Mieloides
5.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026414

RESUMEN

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata , Microglía/fisiología , Infecciones por Virus ARN/inmunología , Virus ARN/fisiología , Animales , Barrera Hematoencefálica , Encéfalo/virología , Humanos , Inflamación Neurogénica , Neuroinmunomodulación
6.
Annu Rev Immunol ; 35: 441-468, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28226226

RESUMEN

Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.


Asunto(s)
Terapia Biológica/métodos , Encéfalo/fisiología , Sistema Nervioso Central , Microglía/fisiología , Enfermedades Neurodegenerativas/inmunología , Inflamación Neurogénica , Animales , Citocinas/metabolismo , Homeostasis , Humanos , Microglía/trasplante
7.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
8.
Cell ; 187(1): 8-13, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181744

RESUMEN

Our understanding of how the brain assembles its circuits and how this goes awry in disease remains incomplete. There has been great progress in generating human neurons from stem cells in vitro and, more recently, in constructing circuits with human cells in vivo by transplantation. Here, I highlight approaches, promises, and challenges of growing human neurons in living animals to study human development and disease.


Asunto(s)
Encéfalo , Neuronas , Animales , Humanos , Células Madre
9.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194967

RESUMEN

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , Morfogénesis
10.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
11.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306983

RESUMEN

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Asunto(s)
Movimiento , Neuronas , Encéfalo/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tálamo/fisiología , Memoria
12.
Cell ; 187(2): 409-427.e19, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242086

RESUMEN

Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.


Asunto(s)
Encéfalo , Memoria , Animales , Ratones , Amígdala del Cerebelo/fisiología , Encéfalo/fisiología , Cocaína/farmacología , Cocaína/metabolismo , Memoria/fisiología , Corteza Prefrontal/fisiología
13.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503282

RESUMEN

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Asunto(s)
Envejecimiento , Encéfalo , Neuronas , Oligodendroglía , Humanos , Envejecimiento/genética , Envejecimiento/patología , Cromatina/genética , Cromatina/metabolismo , Mutación , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de Expresión Génica de una Sola Célula , Secuenciación Completa del Genoma , Encéfalo/metabolismo , Encéfalo/patología , Polimorfismo de Nucleótido Simple , Mutación INDEL , Bancos de Muestras Biológicas , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología
14.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670072

RESUMEN

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Asunto(s)
Neuronas , Animales , Ratones , Ratas , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Blastocisto/metabolismo , Blastocisto/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Especificidad de la Especie , Ratones Endogámicos C57BL , Masculino
15.
Cell ; 187(7): 1745-1761.e19, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38518772

RESUMEN

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.


Asunto(s)
Neuronas , Propiocepción , Animales , Propiocepción/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Movimiento/fisiología , Primates , Redes Neurales de la Computación
16.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729112

RESUMEN

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Asunto(s)
Drosophila melanogaster , Microscopía Electrónica , Neurotransmisores , Sinapsis , Animales , Encéfalo/ultraestructura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestructura , Drosophila melanogaster/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Microscopía Electrónica/métodos , Redes Neurales de la Computación , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Sinapsis/ultraestructura , Sinapsis/metabolismo
17.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38582079

RESUMEN

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas , Tauopatías , Proteínas tau , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Neuronas/metabolismo , Neuronas/patología , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Diferenciación Celular , Mutación , Autofagia
18.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
19.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091994

RESUMEN

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Asunto(s)
Encéfalo , Transcriptoma , Humanos , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Mesencéfalo , Neocórtex , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo
20.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172564

RESUMEN

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Asunto(s)
Microglía , Organoides , Humanos , Encéfalo , Macrófagos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA