Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Neurol ; 20(1): 165, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32354323

RESUMEN

BACKGROUND: Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme involved in the second step of mitochondrial fatty acid ß-oxidation. Mitochondrial diseases resulting from ECHS1 mutations are often characterised by encephalopathy, deafness, epilepsy, optic atrophy, cardiomyopathy, dystonia, and lactic acidosis. In this study, we report two novel heterogeneous variants, c.414 + 5G > A (in intron 3) and c.310C > G (in CDS), of ECHS1 in an infant with mitochondrial encephalopathy. CASE PRESENTATION: The two novel variants, c.414 + 5G > A (Chr10:135183403) in intron 3 and c.310C > G (Chr10:135183512) in CDS, were identified by next generation sequencing (NGS). A minigene assay was used to analyse the function of the c.414 + 5G > A variant. ECHS1 enzyme activity was measured by spectrophotometry in the patient-derived myoblasts. The 2-year old patient presented with mitochondrial encephalopathy since birth. Clinical features were encephalopathy, epilepsy, and hindered psychomotor and language development. Serum lactate and blood ammonia levels were elevated, and brain magnetic resonance imaging showed abnormal signals in the bilateral frontal, parietal, and occipital cortices and brainstem and basal ganglia. We found two novel heterogeneous variants in ECHS1 in this patient. Minigene assay revealed the c.414 + 5G > A variant as the cause of intronic cryptic splice site activation and 39 bp deletion in mature mRNA. In silico analysis predicted that c.310C > G might change glutamine (Q) to glutamic acid (E) in the 104th amino acid sequence (p.Q104E). To investigate the impact of these two variants on protein function, we constructed a 3D model of human ECHS1 and showed that the variants might alter the highly conserved region in close proximity to the active site, which might hinder, or even halt, enzymatic activity. The experimental assay showed that ECHS1 enzyme activity in the patient-derived myoblasts decreased compared to that in control. CONCLUSIONS: Our findings are the first to report a mitochondrial encephalopathy infant carrying two novel ECHS1 variants, c.414 + 5G > A and c.310C > G, which might be deleterious variants, function as pathogenicity markers for mitochondrial encephalopathy, and facilitate disease diagnosis.


Asunto(s)
Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Empalme del ARN/genética , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mutación , Mioblastos/metabolismo
2.
Biochem Biophys Res Commun ; 495(2): 1730-1737, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217198

RESUMEN

Deficiency of the mitochondrial enzyme succinyl COA ligase (SUCL) is associated with encephalomyopathic mtDNA depletion syndrome and methylmalonic aciduria. This disorder is caused by mutations in both SUCL subunits genes: SUCLG1 (α subnit) and SUCLA2 (ß subnit). We report here, two Tunisian patients belonging to a consanguineous family with mitochondrial encephalomyopathy, hearing loss, lactic acidosis, hypotonia, psychomotor retardation and methylmalonic aciduria. Mutational analysis of SUCLG1 gene showed, for the first time, the presence of c.41T > C in the exon 1 at homozygous state. In-silico analysis revealed that this mutation substitutes a conserved methionine residue to a threonine at position 14 (p.M14T) located at the SUCLG1 protein mitochondrial targeting sequence. Moreover, these analysis predicted that this mutation alter stability structure and mitochondrial translocation of the protein. In Addition, a decrease in mtDNA copy number was revealed by real time PCR in the peripheral blood leukocytes in the two patients compared with controls.


Asunto(s)
Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Mutación Missense , Succinato-CoA Ligasas/deficiencia , Succinato-CoA Ligasas/genética , Acidosis Láctica/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Sustitución de Aminoácidos , Preescolar , Consanguinidad , ADN Mitocondrial/genética , Estabilidad de Enzimas/genética , Femenino , Dosificación de Gen , Pérdida Auditiva/genética , Homocigoto , Humanos , Lactante , Masculino , Hipotonía Muscular/genética , Succinato-CoA Ligasas/química
3.
Hum Mutat ; 38(12): 1786-1795, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28905505

RESUMEN

Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl-tRNA synthases. Eukaryotic cells contain 17 mitochondria-specific aminoacyl-tRNA synthases. WARS2 encodes mitochondrial tryptophanyl-tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan-tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Variación Genética , Discapacidad Intelectual/genética , Enfermedades Mitocondriales/genética , Encefalomiopatías Mitocondriales/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Exoma/genética , Femenino , Humanos , Recién Nacido , Discapacidad Intelectual/enzimología , Masculino , Enfermedades Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/patología , Modelos Moleculares , Mutación , Linaje , Fenotipo , Embarazo , Alineación de Secuencia , Secuenciación del Exoma
4.
Genet Couns ; 27(2): 193-205, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29485812

RESUMEN

Background: Mitochondrial Neurogastrointestinal Encephalopathy syndrome is a rare autosomal recessive disorder. The disease is caused by mutations in the thymidine phosphorylase gene. This article reports the clinical, biochemical and molecular findings in three Egyptian patients with Mitochondrial Neurogastrointestinal Encephalopathy sundrome from two different pedigrees. Subjects and Methods: The three patients were subjected to thorough neurologic examination. Brain Magtnetic Resonance Imaging. Histochemical and biochemical assay of the mitochondrial respiratory chain complexes in muscle homogenate was performed (1/3). Thymidine Phosphorylase enzyme activity was performed in 2/3 patients and Thymidine Phosphorylase gene sequencing was done (2/3) to confirm the diagnosis. Results: All patients presented with symptoms of severe gastrointestinal dysmotility with progressive cachexia, neuropathy, sensory neural hearing loss, asymptomatic leukoencephalopathy. Histochemical analysis of themuscle biopsy revealed deficient cytochrome C oxidase and mitochrondrial respiratory chain enzyme assay revealed isolated complex 1 deficiency (1/3). Thymidine Phosphorylase enzyme activity revealed complete absence of enzyme activity in 2/3 patients. Direct sequencing of Thymidine Phosphorylase gene revealed c.3371 A>C homozygous mutation. Molecular screening of both families revealed heterozygous mutation in both parents and 4 siblings. Conclusions: Mitochondrial Neurogastrointestinal Encephalopathy syndrome is a rare mitochondrial disorder with an important diagnostic delay. In case of pathogenic mutations in Thymidine Phosphorylase gene in the family, carrier testing and prenatal diagmosis of at risk members is recommended for early detection. The possibility of new therapeutic options makes it necessary to diagnose the disease in an early state.


Asunto(s)
Seudoobstrucción Intestinal , Encefalomiopatías Mitocondriales , Adulto , Consanguinidad , Egipto , Femenino , Humanos , Seudoobstrucción Intestinal/enzimología , Seudoobstrucción Intestinal/genética , Seudoobstrucción Intestinal/fisiopatología , Masculino , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/fisiopatología , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito , Linaje , Timidina Fosforilasa/genética , Adulto Joven
5.
Hum Mol Genet ; 22(6): 1233-48, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23255162

RESUMEN

Coenzyme Q10 (CoQ(10)) or ubiquinone is a well-known component of the mitochondrial respiratory chain. In humans, CoQ(10) deficiency causes a mitochondrial syndrome with an unexplained variability in the clinical presentations. To try to understand this heterogeneity in the clinical phenotypes, we have generated a Coq9 Knockin (R239X) mouse model. The lack of a functional Coq9 protein in homozygous Coq9 mutant (Coq9(X/X)) mice causes a severe reduction in the Coq7 protein and, as consequence, a widespread CoQ deficiency and accumulation of demethoxyubiquinone. The deficit in CoQ induces a brain-specific impairment of mitochondrial bioenergetics performance, a reduction in respiratory control ratio, ATP levels and ATP/ADP ratio and specific loss of respiratory complex I. These effects lead to neuronal death and demyelinization with severe vacuolization and astrogliosis in the brain of Coq9(X/X) mice that consequently die between 3 and 6 months of age. These results suggest that the instability of mitochondrial complex I in the brain, as a primary event, triggers the development of mitochondrial encephalomyopathy associated with CoQ deficiency.


Asunto(s)
Encefalomiopatías Mitocondriales/enzimología , Ubiquinona/deficiencia , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Encefalomiopatías Mitocondriales/genética , Ubiquinona/genética , Ubiquinona/metabolismo
6.
Ann Neurol ; 76(1): 66-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24841123

RESUMEN

OBJECTIVE: Polymerase gamma (POLG) mutations are a common cause of mitochondrial disease and have also been linked to neurodegeneration and aging. We studied the molecular mechanisms underlying POLG-related neurodegeneration using postmortem tissue from a large number of patients. METHODS: Clinical information was available from all subjects. Formalin-fixed and frozen brain tissue from 15 patients and 23 controls was studied employing a combination of histopathology, immunohistochemistry, and molecular studies of microdissected neurons. RESULTS: The primary consequence of POLG mutation in neurons is mitochondrial DNA depletion. This was already present in infants with little evidence of neuronal loss or mitochondrial dysfunction. With longer disease duration, we found an additional, progressive accumulation of mitochondrial DNA deletions and point mutations accompanied by increasing numbers of complex I-deficient neurons. Progressive neurodegeneration primarily affected the cerebellar systems and dopaminergic cells of the substantia nigra. Superimposed on this chronic process were acute, focal cortical lesions that correlated with epileptogenic foci and that showed massive neuronal loss. INTERPRETATION: POLG mutations appear to compromise neuronal respiration via a combination of early and stable depletion and a progressive somatic mutagenesis of the mitochondrial genome. This leads to 2 distinct but overlapping biological processes: a chronic neurodegeneration reflected clinically by progressive ataxia and cognitive impairment, and an acute focal neuronal necrosis that appears to be related to the presence of epileptic seizures. Our findings offer an explanation of the acute-on-chronic clinical course of this common mitochondrial encephalopathy.


Asunto(s)
ADN Polimerasa Dirigida por ADN/efectos adversos , ADN Polimerasa Dirigida por ADN/genética , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Adolescente , Adulto , Cerebelo/enzimología , Cerebelo/patología , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Niño , ADN Polimerasa gamma , ADN Mitocondrial/genética , Progresión de la Enfermedad , Humanos , Lactante , Persona de Mediana Edad , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Mutación/genética , Sustancia Negra/enzimología , Sustancia Negra/patología , Adulto Joven
7.
Hum Mutat ; 35(8): 983-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24827421

RESUMEN

By way of whole-exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl-tRNA and threonyl-tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild-type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl-tRNA synthetases, as causes of clinically distinct, early-onset mitochondrial encephalopathies.


Asunto(s)
Antígenos HLA/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Mutación , Treonina-ARNt Ligasa/genética , Valina-ARNt Ligasa/genética , Línea Celular , Niño , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Antígenos HLA/metabolismo , Heterocigoto , Homocigoto , Humanos , Lactante , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Mitocondrias/enzimología , Mitocondrias/patología , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/patología , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Treonina-ARNt Ligasa/metabolismo , Valina-ARNt Ligasa/metabolismo
8.
Hum Mol Genet ; 21(1): 115-20, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21965299

RESUMEN

Mitochondrial complex I (CI) is a multi-subunit enzyme that forms the major entry point of nicotinamide adenine dinucleotide (NADH) electrons into the respiratory chain. Mutations in the NDUFS4 gene, encoding an accessory subunit of this complex, cause a Leigh-like phenotype in humans. To study the nature and penetrance of the CI defect in different tissues, we investigated the role of NDUFS4 in mice with fatal mitochondrial encephalomyopathy, caused by a systemic inactivation of the Ndufs4 gene. We report that the absence of NDUFS4 in different mouse tissues results in decreased activity and stability of CI. This CI instability leads to an increased disconnection of electron influx of the NADH dehydrogenase module from the holo-complex. However, the formation of respiratory supercomplexes still allows formation of active CI in these Ndufs4 knock-out mice. These results reveal the importance of these supramolecular interactions not only for stabilization but also for the assembly of CI, which becomes especially relevant in pathological conditions.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/enzimología , Encefalomiopatías Mitocondriales/enzimología , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/química , Encefalomiopatías Mitocondriales/genética , Unión Proteica , Estabilidad Proteica
9.
Brain ; 136(Pt 5): 1544-54, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23599390

RESUMEN

Whole exome sequencing is a powerful tool to detect novel pathogenic mutations in patients with suspected mitochondrial disease. However, the interpretation of novel genetic variants is not always straightforward. Here, we present two siblings with a severe neonatal encephalopathy caused by complex V deficiency. The aim of this study was to uncover the underlying genetic defect using the combination of enzymatic testing and whole exome sequence analysis, and to provide evidence for causality by functional follow-up. Measurement of the oxygen consumption rate and enzyme analysis in fibroblasts were performed. Immunoblotting techniques were applied to study complex V assembly. The coding regions of the genome were analysed. Three-dimensional modelling was applied. Exome sequencing of the two siblings with complex V deficiency revealed a heterozygous mutation in the ATP5A1 gene, coding for complex V subunit α. The father carried the variant heterozygously. At the messenger RNA level, only the mutated allele was expressed in the patients, whereas the father expressed both the wild-type and the mutant allele. Gene expression data indicate that the maternal allele is not expressed, which is supported by the observation that the ATP5A1 expression levels in the patients and their mother are reduced to ∼50%. Complementation with wild-type ATP5A1 restored complex V in the patient fibroblasts, confirming pathogenicity of the defect. At the protein level, the mutation results in a disturbed interaction of the α-subunit with the ß-subunit of complex V, which interferes with the stability of the complex. This study demonstrates the important value of functional studies in the diagnostic work-up of mitochondrial patients, in order to guide genetic variant prioritization, and to validate gene defects.


Asunto(s)
Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Células Cultivadas , Humanos , Recién Nacido , Encefalomiopatías Mitocondriales/mortalidad , ATPasas de Translocación de Protón Mitocondriales/química , Factores de Acoplamiento de la Fosforilación Oxidativa/química , Factores de Acoplamiento de la Fosforilación Oxidativa/genética , Estructura Secundaria de Proteína
11.
Hum Mol Genet ; 20(1): 155-64, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20940150

RESUMEN

Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.


Asunto(s)
Encefalomiopatías Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Enfermedades Musculares/enzimología , Timidina Quinasa/deficiencia , Timidina Quinasa/genética , Factores de Transcripción/genética , Edad de Inicio , Animales , Encéfalo/enzimología , Encéfalo/patología , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Corazón , Ratones , Encefalomiopatías Mitocondriales/genética , Enfermedades Musculares/genética , Especificidad de Órganos/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/genética , Regulación hacia Arriba/genética
12.
J Hum Genet ; 58(8): 526-30, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23759946

RESUMEN

SUCLA2 is one of several nuclear-encoded genes that can cause encephalomyopathy accompanied by mitochondrial DNA depletion. The disorder usually manifests in early childhood and leads to early death. The gene encodes one of the subunits of succinyl-CoA synthase, the enzyme that catalyzes the reversible conversion of substrates succinyl-CoA and ADP to products succinate and ATP in the tricarboxylic acid pathway. Thirty-two individuals harboring mutations in SUCLA2 have so far been reported, and five different mutations were observed among these individuals. Here we report identification of a novel mutation in SUCLA2 in two cousins affected with encephalomyopathy. The novel mutation causes p.Asp251Asn; the affected amino acid is likely positioned within the ATP-grasp domain of the encoded protein. As previously reported in other patients, we did not observe elevation of methylmalonic acid, the biochemical hallmark of patients with mutations in SUCLA2. We instead found elevated levels of succinylcarnitine.


Asunto(s)
Sustitución de Aminoácidos/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Encefalomiopatías Mitocondriales/enzimología , Mutación/genética , Succinato-CoA Ligasas/genética , Adulto , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Succinato-CoA Ligasas/química
13.
Nat Rev Cancer ; 3(3): 193-202, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12612654

RESUMEN

Mitochondrial defects have been associated with neurological disorders, as well as cancers. Two ubiquitously expressed mitochondrial enzymes--succinate dehydrogenase (SDH) and fumarate hydratase (FH, fumarase)--catalyse sequential steps in the Krebs tricarboxylic-acid cycle. Inherited heterozygous mutations in the genes encoding these enzymes cause predispositions to two types of inherited neoplasia syndromes that do not share any component tumours. Homozygous mutations in the same genes result in severe neurological impairment. Understanding this link between inherited cancer syndromes and neurological disease could provide further insights into the mechanisms by which mitochondrial deficiencies lead to tumour development.


Asunto(s)
Ciclo del Ácido Cítrico/genética , Fumarato Hidratasa/fisiología , Mitocondrias/enzimología , Encefalomiopatías Mitocondriales/enzimología , Complejos Multienzimáticos/fisiología , Síndromes Neoplásicos Hereditarios/enzimología , Oxidorreductasas/fisiología , Succinato Deshidrogenasa/fisiología , Apoptosis/genética , Apoptosis/fisiología , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Complejo II de Transporte de Electrones , Metabolismo Energético , Predicción , Radicales Libres , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Heterocigoto , Homocigoto , Humanos , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Leiomiomatosis/genética , Encefalomiopatías Mitocondriales/genética , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Mutación , Síndromes Neoplásicos Hereditarios/genética , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Paraganglioma/enzimología , Paraganglioma/genética , Feocromocitoma/enzimología , Feocromocitoma/genética , Subunidades de Proteína , Succinato Deshidrogenasa/deficiencia , Succinato Deshidrogenasa/genética
14.
Hum Mol Genet ; 19(24): 4837-47, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20858599

RESUMEN

Complex I is the first and largest enzyme in the respiratory chain and is located in the inner mitochondrial membrane. Complex I deficiency is the most commonly reported mitochondrial disorder presenting in childhood, but the molecular basis of most cases remains elusive. We describe a patient with complex I deficiency caused by mutation of the molecular chaperone FOXRED1. A combined homozygosity mapping and bioinformatics approach in a consanguineous Iranian-Jewish pedigree led to the identification of a homozygous mutation in FOXRED1 in a child who presented with infantile-onset encephalomyopathy. Silencing of FOXRED1 in human fibroblasts resulted in reduced complex I steady-state levels and activity, while lentiviral-mediated FOXRED1 transgene expression rescued complex I deficiency in the patient fibroblasts. This FAD-dependent oxidoreductase, which has never previously been associated with human disease, is now shown to be a complex I-specific molecular chaperone. The discovery of the c.1054C>T; p.R352W mutation in the FOXRED1 gene is a further contribution towards resolving the complex puzzle of the genetic basis of human mitochondrial disease.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Chaperonas Moleculares/genética , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Biología Computacional , Análisis Mutacional de ADN , Regulación de la Expresión Génica , Silenciador del Gen , Prueba de Complementación Genética , Homocigoto , Humanos , Lactante , Lentivirus/genética , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/epidemiología , Encefalomiopatías Mitocondriales/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo
15.
Mol Genet Metab ; 107(3): 403-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23010432

RESUMEN

Mitochondrial disorders with multiple mitochondrial respiratory chain (MRC) enzyme deficiency and depletion of mitochondrial DNA (mtDNA) are autosomal recessive conditions due to mutations in several nuclear genes necessary for proper mtDNA maintenance. In this report, we describe two Italian siblings presenting with encephalomyopathy and mtDNA depletion in muscle. By whole exome-sequencing and prioritization of candidate genes, we identified a novel homozygous missense mutation in the SUCLA2 gene in a highly conserved aminoacid residue. Although a recurrent mutation in the SUCLA2 gene is relatively frequent in the Faroe Islands, mutations in other populations are extremely rare. In contrast with what has been reported in other patients, methyl-malonic aciduria, a biomarker for this genetic defect, was absent in our proband and very mildly elevated in her affected sister. This report demonstrates that next-generation technologies, particularly exome-sequencing, are user friendly, powerful means for the identification of disease genes in genetically and clinically heterogeneous inherited conditions, such as mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/genética , Exoma , Encefalomiopatías Mitocondriales/genética , Músculo Esquelético/enzimología , Mutación Missense , Succinato-CoA Ligasas/genética , Adolescente , Secuencia de Aminoácidos , Niño , Femenino , Homocigoto , Humanos , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/patología , Datos de Secuencia Molecular , Músculo Esquelético/patología , Linaje , Alineación de Secuencia , Análisis de Secuencia de ADN , Hermanos
16.
Biochim Biophys Acta ; 1787(5): 491-501, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18977334

RESUMEN

MELAS, MERRF, LHON and NARP, are well-established mitochondrial syndromes associated with specific point mutations of mitochondrial DNA (mtDNA). However, these recurrent mtDNA mutations account for only a minority of mitochondrial disease cases. To evaluate the impact of novel mtDNA mutations, we performed mtDNA sequence analysis in muscle and other tissues of 240 patients with different mitochondrial neuromuscular syndromes. We identified a total of 33 subjects with novel, private or uncommon mutations. Among these, five novel mutations were found in both paediatric and adult cases. We here report on the clinical description of these patients, as well as the biochemical and molecular genetic characterization of the corresponding mutations. Patients 1 and 2 showed changes in ND genes, patient 3 carried a heteroplasmic deletion in the COI gene, patients 4 and 5 carried heteroplasmic mutations in tRNA(Trp) and tRNA(Phe), respectively. Altogether, these data indicate that mtDNA analysis must become part of the routine screening for mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/genética , Encefalomiopatías Mitocondriales/genética , Mutación , Adulto , Encéfalo/patología , Niño , ADN/genética , ADN/aislamiento & purificación , Cartilla de ADN , Complejo IV de Transporte de Electrones/genética , Humanos , Imagen por Resonancia Magnética , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/patología , Músculo Esquelético/patología , NADH Deshidrogenasa/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Succinato Deshidrogenasa/genética
17.
Biochim Biophys Acta ; 1787(5): 502-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19210954

RESUMEN

This paper covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in hereditary neurological disorders associated with complex I defects. Three types of hereditary complex I dysfunction are dealt with: (i) homozygous mutations in the nuclear genes NDUFS1 and NDUFS4 of complex I, associated with mitochondrial encephalopathy; (ii) a recessive hereditary epileptic neurological disorder associated with enhanced proteolytic degradation of complex I; (iii) homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex, coexistent with mutation in the nuclear PINK1 gene in familial Parkinsonism. The genetic and biochemical data examined highlight different mechanisms by which mitochondrial bioenergetics is altered in these hereditary defects of complex I. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in sporadic neurological disorders and aging, as well as for developing therapeutical strategies.


Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Mutación , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/química , Epilepsia/enzimología , Epilepsia/genética , Humanos , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , NADH Deshidrogenasa/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Especies Reactivas de Oxígeno/metabolismo
18.
Biochim Biophys Acta ; 1793(11): 1776-86, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19735676

RESUMEN

The mitochondrial F(1)F(0)-ATP synthase or ATPase is a key enzyme for aerobic energy production in eukaryotic cells. Mutations in ATPase structural and assembly genes are the primary cause of severe human encephalomyopathies, frequently associated with a pleiotropic decrease in cytochrome c oxidase (COX) activity. We have studied the structural and functional constraints underlying the COX defect using Saccharomyces cerevisiae genetic and pharmacological models of ATPase deficiency. In both yeast Deltaatp10 and oligomycin-treated wild type cells, COX assembly is selectively impaired in the absence of functional ATPase. The COX biogenesis defect does not involve a primary alteration in the expression of the COX subunits as previously suggested but in their maturation and/or assembly. Expression of COX subunit 1, however, is translationally regulated as in most bona fide COX assembly mutants. Additionally, the COX defect in oligomycin-inhibited ATPase-deficient yeast cells, but not in atp10 cells could be partially prevented by partially dissipating the mitochondrial membrane potential using the uncoupler CCCP. Similar results were obtained with oligomycin-treated and ATP12-deficient human fibroblasts respectively. Our findings imply that fully assembled ATPase and its proton pumping function are both required for COX biogenesis in yeast and mammalian cells through a mechanism independent of Cox1p synthesis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , ATPasas de Translocación de Protón , Saccharomyces cerevisiae/enzimología , Aerobiosis/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Complejo IV de Transporte de Electrones , Fibroblastos/enzimología , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Humanos , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Modelos Biológicos , Mutación , Oligomicinas/farmacología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Desacopladores/farmacología
19.
J Clin Invest ; 117(3): 587-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17332886

RESUMEN

Although it was first described in 1989, our understanding of coenzyme Q10 (CoQ10) deficiency is only now coming of age with the recent first description of the underlying molecular defects. The diverse clinical presentations, classifiable into four major syndromes, raise the question as to whether the deficiencies are primary or secondary. Recent studies, including the one by Mollet, Rötig, and colleagues reported in this issue of the JCI, document molecular defects in three of the nine genes required for CoQ10 biosynthesis, all of which are associated with early and severe clinical presentations (see the related article beginning on page 765). It is anticipated that defects in the other six genes will cause similar early-onset encephalomyopathies. Awareness of CoQ10 deficiency is important because individuals with primary or secondary variants may benefit from oral CoQ10 supplementation.


Asunto(s)
Mitocondrias/enzimología , Encefalomiopatías Mitocondriales/genética , Ubiquinona/análogos & derivados , Preescolar , Coenzimas , Humanos , Lactante , Encefalomiopatías Mitocondriales/enzimología , Mutación , Ubiquinona/biosíntesis , Ubiquinona/deficiencia , Ubiquinona/genética
20.
J Inherit Metab Dis ; 33 Suppl 3: S139-43, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20151198

RESUMEN

Deficiency of the cytosolic enzyme thymidine phosphorylase (TP) causes a multisystem disorder called mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome. Clinical symptoms are gastrointestinal dysfunction, muscle involvement and neurological deterioration. TP deficiency is biochemically characterised by accumulation of thymidine and deoxyuridine in body fluids and compromised mitochondrial deoxyribose nucleic acid (mtDNA) integrity (depletion and multiple deletions). In this report we describe a patient with the clinical and biochemical features related to the end stage of the disease. Home parenteral nutrition had started to improve the clinical condition and preparations were initiated for stem cell transplantation (SCT) as a last resort treatment. Unfortunately, the patient died during the induction phase of SCT. This report shows that TP deficiency is a severe clinical condition with a broad spectrum of affected tissues. TP deficiency can be easily determined by the measurement of pyrimidine metabolites in body fluids and TP activity in peripheral blood leucocytes. Early detection and treatment may prevent the progress of the clinical symptoms and, therefore, should be considered for inclusion in newborn screening programmes.


Asunto(s)
Seudoobstrucción Intestinal/enzimología , Encefalomiopatías Mitocondriales/enzimología , Timidina Fosforilasa/deficiencia , Adolescente , Adulto , Biomarcadores/análisis , Análisis Mutacional de ADN , Progresión de la Enfermedad , Resultado Fatal , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Seudoobstrucción Intestinal/diagnóstico , Seudoobstrucción Intestinal/genética , Seudoobstrucción Intestinal/terapia , Masculino , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/terapia , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito , Nutrición Parenteral en el Domicilio , Linaje , Fenotipo , Pronóstico , Índice de Severidad de la Enfermedad , Trasplante de Células Madre , Timidina Fosforilasa/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA