Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 63(1): 34-48, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27345151

RESUMEN

Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.


Asunto(s)
Autofagia , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Neoplasias Colorrectales/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Sequestosoma-1/metabolismo , Ubiquitinación , Autofagia/efectos de la radiación , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Ensamble y Desensamble de Cromatina/efectos de la radiación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/radioterapia , Reparación del ADN/efectos de la radiación , Células HCT116 , Histonas/metabolismo , Humanos , Interferencia de ARN , Tolerancia a Radiación , Proteína Sequestosoma-1/genética , Transducción de Señal , Transfección , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de la radiación
2.
EMBO J ; 36(22): 3372-3386, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29018037

RESUMEN

Ultraviolet (UV) light induces mutagenic cyclobutane pyrimidine dimers (CPDs) in nucleosomal DNA that is tightly wrapped around histone octamers. How global-genome nucleotide excision repair (GG-NER) processes CPDs despite that this chromatin arrangement is poorly understood. An increased chromatin association of CHD1 (chromodomain helicase DNA-binding 1) upon UV irradiation indicated possible roles of this chromatin remodeler in the UV damage response. Immunoprecipitation of chromatin fragments revealed that CHD1 co-localizes in part with GG-NER factors. Chromatin fractionation showed that the UV-dependent recruitment of CHD1 occurs to UV lesions in histone-assembled nucleosomal DNA and that this CHD1 relocation requires the lesion sensor XPC (xeroderma pigmentosum group C). In situ immunofluorescence analyses further demonstrate that CHD1 facilitates substrate handover from XPC to the downstream TFIIH (transcription factor IIH). Consequently, CHD1 depletion slows down CPD excision and sensitizes cells to UV-induced cytotoxicity. The finding of a CHD1-driven lesion handover between sequentially acting GG-NER factors on nucleosomal histone octamers suggests that chromatin provides a recognition scaffold enabling the detection of a subset of CPDs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Factor de Transcripción TFIIH/metabolismo , Rayos Ultravioleta , Xerodermia Pigmentosa/metabolismo , Muerte Celular/efectos de la radiación , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/efectos de la radiación , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Nucleosomas/efectos de la radiación , Dímeros de Pirimidina/metabolismo , ARN Interferente Pequeño/metabolismo
3.
Stem Cells ; 36(4): 574-588, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282803

RESUMEN

The main function of the skin, to protect against the environment, is supported by the activity of different stem cell populations. The main focus of this study was elucidating the coping mechanisms of stem cells against the stimulation of constant exposure to genotoxic stresses, both endogenous and exogenous, to ensure long-term function. Investigation of various mouse strains, differing in their DNA repair capacity, enables us to clarify fractionated low-dose irradiation (LDR)-induced consequences for different stem cell populations of the murine hair follicle (HF) in their physiological stem cell niche. Using microscopic techniques combined with flow cytometry, we could show that LDR induces accumulation of persisting; pKu70-independent 53BP1-foci ("chromatin-alterations") in heterochromatic regions of the HF stem cells (HFSCs). These remaining chromatin-alterations result in varying stem cell consequences. CD34-positive HFSCs react by ataxia telangiectasia mutated-dependent, premature senescence, which correlates with global chromatin compaction, whereby apoptosis is prevented by the activity of DNA-dependent protein kinase catalytic subunit. However, distinctively highly damaged HFSCs seem to be sorted out of the niche by differentiation, transferring their chromatin-alterations to more proliferative G protein-coupled receptor 5-positive stem cells. Consequentially, the loss of basal HFSCs is compensated by increased proliferation within the stem cell pool. Despite the initial success of these mechanisms in stem cell population maintenance, the combined effect of the chromatin-alterations and the modification in stem cell pool composition may lead to downstream long-term functional loss of tissue or organs. Stem Cells 2018;36:574-588.


Asunto(s)
Proliferación Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de la radiación , Rayos gamma , Folículo Piloso/metabolismo , Células Madre/metabolismo , Animales , Relación Dosis-Respuesta en la Radiación , Folículo Piloso/patología , Ratones , Ratones Transgénicos , Células Madre/patología
4.
Nature ; 498(7453): 246-50, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23728299

RESUMEN

DNA damage activates a signalling network that blocks cell-cycle progression, recruits DNA repair factors and/or triggers senescence or programmed cell death. Alterations in chromatin structure are implicated in the initiation and propagation of the DNA damage response. Here we further investigate the role of chromatin structure in the DNA damage response by monitoring ionizing-radiation-induced signalling and response events with a high-content multiplex RNA-mediated interference screen of chromatin-modifying and -interacting genes. We discover that an isoform of Brd4, a bromodomain and extra-terminal (BET) family member, functions as an endogenous inhibitor of DNA damage response signalling by recruiting the condensin II chromatin remodelling complex to acetylated histones through bromodomain interactions. Loss of this isoform results in relaxed chromatin structure, rapid cell-cycle checkpoint recovery and enhanced survival after irradiation, whereas functional gain of this isoform compacted chromatin, attenuated DNA damage response signalling and enhanced radiation-induced lethality. These data implicate Brd4, previously known for its role in transcriptional control, as an insulator of chromatin that can modulate the signalling response to DNA damage.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Daño del ADN , Proteínas Nucleares/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Acetilación , Adenosina Trifosfatasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Cromatina/química , Cromatina/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosforilación/efectos de la radiación , Factor B de Elongación Transcripcional Positiva/metabolismo , Isoformas de Proteínas/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
5.
Mol Cell ; 37(2): 235-46, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122405

RESUMEN

The ATP-dependent chromatin remodeler CSB is essential for transcription-coupled DNA repair, and mutations in CSB lead to Cockayne syndrome. Here, we examined the recruitment of CSB to chromatin after ultraviolet (UV) irradiation and uncovered a regulatory mechanism that ensures the specific association of this remodeler with chromatin. We demonstrate that ATP hydrolysis by CSB is essential for stable CSB-chromatin association after UV irradiation and that defects in this association underlie some forms of Cockayne syndrome. We also show that the N-terminal region of CSB negatively regulates chromatin association during normal cell growth. Of interest, in the absence of the negative regulatory region, ATP hydrolysis becomes dispensable for chromatin association, indicating that CSB uses energy from ATP hydrolysis to overcome the inhibitory effect imposed by its N-terminal region. Together, our results suggest that the recruitment of CSB to lesion-stalled transcription is an ATP-dependent process and involves a gross conformational change of CSB.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/fisiología , Rayos Ultravioleta , Adenosina Trifosfatasas/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Ensamble y Desensamble de Cromatina/efectos de la radiación , Síndrome de Cockayne/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Modelos Genéticos , Proteínas de Unión a Poli-ADP-Ribosa
6.
Mol Cell ; 40(1): 9-21, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932471

RESUMEN

PR-Set7/Set8 is a cell-cycle-regulated enzyme that monomethylates lysine 20 of histone H4 (H4K20). Set8 and monomethylated H4K20 are virtually undetectable during G1 and S phases of the cell cycle but increase in late S and in G2. We identify CRL4(Cdt2) as the principal E3 ubiquitin ligase responsible for Set8 proteolytic degradation in the S phase of the cell cycle, which requires Set8-PCNA interaction. Inactivation of the CRL4-Cdt2-PCNA-Set8 degradation axis results in (1) DNA damage and the induction of tumor suppressor p53 and p53-transactivated proapoptotic genes, (2) delayed progression through G2 phase of the cell cycle due to activation of the G2/M checkpoint, (3) specific repression of histone gene transcription and depletion of the histone proteins, and (4) repression of E2F1-dependent gene transcription. These results demonstrate a central role of CRL4(Cdt2)-dependent cell-cycle regulation of Set8 for the maintenance of a stable epigenetic state essential for cell viability.


Asunto(s)
Ciclo Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cullin/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de la radiación , Proteínas Cullin/genética , Daño del ADN , Regulación hacia Abajo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Epigénesis Genética , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación
7.
Mol Cell ; 40(1): 22-33, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932472

RESUMEN

The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cullin/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Fase S , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de la radiación , Proteínas Cullin/genética , Daño del ADN , Replicación del ADN , Regulación hacia Abajo , Inestabilidad Genómica , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Mutación , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Factores de Tiempo , Ubiquitina-Proteína Ligasas , Ubiquitinación , Xenopus
8.
PLoS Genet ; 11(3): e1005105, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25822411

RESUMEN

Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas Fúngicas/genética , Luz , Factores de Transcripción/biosíntesis , Ensamble y Desensamble de Cromatina/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/biosíntesis , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Neurospora crassa/genética , Neurospora crassa/efectos de la radiación , Factores de Transcripción/genética , Activación Transcripcional/genética , Activación Transcripcional/efectos de la radiación
9.
Proc Natl Acad Sci U S A ; 112(21): E2836-44, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964332

RESUMEN

The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Fototransducción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de la radiación , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Cotiledón/efectos de la radiación , Metilación de ADN , Silenciador del Gen , Genes de Plantas , Heterocromatina/genética , Heterocromatina/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular , Fototransducción/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , ARN Polimerasa II/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110966

RESUMEN

In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.


Asunto(s)
Bencimidazoles/farmacología , Ensamble y Desensamble de Cromatina/efectos de la radiación , ADN/metabolismo , Colorantes Fluorescentes/farmacología , Rayos X , Animales , Ratones , Microscopía Fluorescente , Células 3T3 NIH
11.
J Biol Chem ; 291(4): 1789-1802, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26559976

RESUMEN

Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de la radiación , Cromatina/metabolismo , Cromatina/efectos de la radiación , Histonas/metabolismo , Animales , Línea Celular , Daño del ADN/efectos de la radiación , Reparación del ADN , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Rayos Láser , Ratones , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo
12.
J Cell Sci ; 128(23): 4380-94, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26446258

RESUMEN

Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de la radiación , Cromatina/metabolismo , Daño del ADN , Epigénesis Genética/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Cromatina/genética , Cromatina/patología , Ratones , Células 3T3 NIH
13.
J Biol Chem ; 290(44): 26597-609, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26354431

RESUMEN

Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Histonas/química , Radical Hidroxilo/química , Nucleosomas/metabolismo , Dímeros de Pirimidina/química , Proteínas Recombinantes de Fusión/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Ensamble y Desensamble de Cromatina/efectos de la radiación , Metilación de ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desaminación , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Radical Hidroxilo/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nucleosomas/química , Nucleosomas/efectos de la radiación , Regiones Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rayos Ultravioleta
14.
Arch Toxicol ; 90(11): 2583-2594, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27549370

RESUMEN

Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.


Asunto(s)
Reparación del ADN , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Transcripción Genética , Animales , Evolución Biológica , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Humanos , Mutágenos/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Especificidad de la Especie , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta/efectos adversos
15.
BMC Plant Biol ; 14: 76, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24666886

RESUMEN

BACKGROUND: Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions. RESULTS: Already modest (2-fold) over-expression of the AtCHR23 ATPase gene in Arabidopsis results in overall reduced growth compared to the wild-type. Detailed analyses show that in the root, the reduction of growth is due to reduced cell elongation. The reduced-growth phenotype requires sufficient light and is magnified by applying deliberate abiotic (salt, osmotic) stress. In contrast, the knockout mutation of AtCHR23 does not lead to such visible phenotypic effects. In addition, we show that over-expression of AtCHR23 increases the variability of growth in populations of genetically identical plants. These data indicate that accurate and controlled expression of AtCHR23 contributes to the stability or robustness of growth. Detailed RNAseq analyses demonstrate that upon AtCHR23 over-expression also the variation of gene expression is increased in a subset of genes that associate with environmental stress. The larger variation of gene expression is confirmed in individual plants with the help of independent qRT-PCR analysis. CONCLUSIONS: Over-expression of AtCHR23 gives Arabidopsis a phenotype that is markedly different from the growth arrest phenotype observed upon over-expression of AtCHR12, the paralog of AtCHR23, in response to abiotic stress. This demonstrates functional sub-specialization of highly similar ATPases in Arabidopsis. Over-expression of AtCHR23 increases the variability of growth among genetically identical individuals in a way that is consistent with increased variability of expression of a distinct subset of genes that associate with environmental stress. We propose that ATCHR23-mediated chromatin remodeling is a potential component of a buffer system in plants that protects against environmentally-induced phenotypic and transcriptional variation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica de las Plantas , Adenosina Trifosfatasas/genética , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Hipocótilo/anatomía & histología , Hipocótilo/efectos de la radiación , Luz , Mutación/genética , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
16.
PLoS Genet ; 6(5): e1000941, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20463888

RESUMEN

Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Ensamble y Desensamble de Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación de la Incompatibilidad de ADN/efectos de la radiación , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Masculino , Rayos Ultravioleta
17.
Bull Exp Biol Med ; 153(4): 495-500, 2012 Aug.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-22977854

RESUMEN

The exposure of HeLa G63 and ECV-304 cells to γ-rays of (137)Cs as well as ß-particles of (3)H(2)O and (3)H-thymidine induced changes in redox status of not only irradiated cells, but also their progeny. Increased intracellular levels of nitric oxide (NO) were observed only in HeLa G63 cells and persisted over three cell generations; ß-particles from (3)H(2)O were most efficient. Intracellular superoxide (O(2)(-)) level had similar dynamics in both cell lines. Intracellular O(2)(-) level decreased immediately after irradiation, but then increased and significantly surpassed the control level. These changes in the intracellular level of O(2)(-) were accompanied by decondensation of nuclear chromatin. Increased level of free radicals in the progeny of irradiated cells and changes in chromatin conformation and the absence of correlation between radiation-induced structural damage to chromosomes and intracellular level of free radicals suggest participation of epigenetic mechanisms of inheritance.


Asunto(s)
Partículas beta/efectos adversos , Carcinoma/metabolismo , Carcinoma/radioterapia , Células Endoteliales/efectos de la radiación , Rayos gamma/efectos adversos , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Partículas beta/uso terapéutico , Radioisótopos de Cesio , Ensamble y Desensamble de Cromatina/efectos de la radiación , Células Endoteliales/metabolismo , Epigénesis Genética , Radicales Libres/metabolismo , Rayos gamma/uso terapéutico , Células HeLa , Humanos , Oxidación-Reducción , Tritio
18.
J Biol Chem ; 285(43): 33134-33143, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20713352

RESUMEN

RB plays an essential role in DNA damage-induced growth arrest and regulates the expression of several factors essential for DNA repair machinery. However, how RB coordinates DNA damage response through transcriptional regulation of genes involved in growth arrest remains largely unexplored. We examined whether RB can mediate the response to DNA damage through modulation of ZBRK1, a zinc finger-containing transcriptional repressor that can modulate the expression of GADD45A, a DNA damage response gene, to induce cell cycle arrest in response to DNA damage. We found that the ZBRK1 promoter contains an authentic E2F-recognition sequence that specifically binds E2F1, but not E2F4 or E2F6, together with chromatin remodeling proteins CtIP and CtBP to form a repression complex that suppresses ZBRK1 transcription. Furthermore, loss of RB-mediated transcriptional repression led to an increase in ZBRK1 transcript levels, correlating with increased sensitivity to ultraviolet (UV) and methyl methanesulfonate-induced DNA damage. Taken together, these results suggest that the RB·CtIP (CtBP interacting protein)/CtBP (C terminus-binding protein) /E2F1 complex plays a critical role in ZBRK1 transcriptional repression, and loss of this repression may contribute to cellular sensitivity of DNA damage, ultimately leading to carcinogenesis.


Asunto(s)
Daño del ADN/fisiología , Factor de Transcripción E2F1/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Represoras/biosíntesis , Elementos de Respuesta/fisiología , Proteína de Retinoblastoma/metabolismo , Transcripción Genética/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/fisiología , Ensamble y Desensamble de Cromatina/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Factor de Transcripción E2F1/genética , Endodesoxirribonucleasas , Humanos , Mesilatos/farmacología , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteína de Retinoblastoma/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Rayos Ultravioleta/efectos adversos
19.
Mutat Res ; 714(1-2): 113-25, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21784089

RESUMEN

Ionizing radiation (IR) is a pivotal diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. IR-induced genome instability has been well-documented in directly exposed cells and organisms. It has also been observed in distant 'bystander' cells. Enigmatically, increased instability is even observed in progeny of pre-conceptually exposed animals, including humans. The mechanisms by which it arises remain obscure and, recently, they have been proposed to be epigenetic in nature. Three major epigenetic phenomena include DNA methylation, histone modifications and small RNA-mediated silencing. This review focuses on the role of DNA methylation and small RNAs in directly exposed and bystander tissues and in IR-induced transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms.


Asunto(s)
Epigénesis Genética , Inestabilidad Genómica/efectos de la radiación , Radiación Ionizante , Animales , Efecto Espectador/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de la radiación , Metilación de ADN , Humanos , ARN Interferente Pequeño
20.
Genetics ; 181(1): 39-51, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18957704

RESUMEN

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Intercambio Genético , Roturas del ADN de Doble Cadena , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Fase Paquiteno , Animales , Ensamble y Desensamble de Cromatina/efectos de la radiación , Intercambio Genético/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Drosophila melanogaster/efectos de la radiación , Femenino , Genes de Insecto , Modelos Genéticos , Mutación/genética , Oocitos/citología , Oocitos/metabolismo , Oocitos/efectos de la radiación , Fase Paquiteno/efectos de la radiación , Fenotipo , Intercambio de Cromátides Hermanas/efectos de la radiación , Coloración y Etiquetado , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/efectos de la radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA