Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 608(7923): 563-568, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859171

RESUMEN

A fundamental gap in the study of the origin of limbed vertebrates lies in understanding the morphological and functional diversity of their closest relatives. Whereas analyses of the elpistostegalians Panderichthys rhombolepis, Tiktaalik roseae and Elpistostege watsoni have revealed a sequence of changes in locomotor, feeding and respiratory structures during the transition1-9, an isolated bone, a putative humerus, has controversially hinted at a wider range in form and function than now recognized10-14. Here we report the discovery of a new elpistostegalian from the Late Devonian period of the Canadian Arctic that shows surprising disparity in the group. The specimen includes partial upper and lower jaws, pharyngeal elements, a pectoral fin and scalation. This new genus is phylogenetically proximate to T. roseae and E. watsoni but evinces notable differences from both taxa and, indeed, other described tetrapodomorphs. Lacking processes, joint orientations and muscle scars indicative of appendage-based support on a hard substrate13, its pectoral fin shows specializations for swimming that are unlike those known from other sarcopterygians. This unexpected morphological and functional diversity represents a previously hidden ecological expansion, a secondary return to open water, near the origin of limbed vertebrates.


Asunto(s)
Evolución Biológica , Peces , Fósiles , Aletas de Animales/anatomía & histología , Escamas de Animales/anatomía & histología , Animales , Regiones Árticas , Canadá , Peces/anatomía & histología , Peces/clasificación , Historia Antigua , Mandíbula/anatomía & histología , Faringe/anatomía & histología , Filogenia , Natación
2.
Nature ; 590(7844): 129-133, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408418

RESUMEN

Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics that is needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances1-5, but how they might regulate growth during tissue regeneration is unresolved6,7. Here we report that rhythmic travelling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that waves of Erk activity travel across the osteoblast population as expanding concentric rings that are broadcast from a central source, inducing ring-like patterns of tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves that are able to traverse the entire scale in approximately two days and that the frequency of wave generation controls the rate of scale regeneration. Furthermore, the periodic induction of synchronous, tissue-wide activation of Erk in place of travelling waves impairs tissue growth, which indicates that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Osteoblastos/citología , Osteoblastos/metabolismo , Regeneración , Pez Cebra/fisiología , Escamas de Animales/citología , Escamas de Animales/enzimología , Escamas de Animales/crecimiento & desarrollo , Escamas de Animales/fisiología , Animales , Difusión , Femenino , Masculino , Pez Cebra/crecimiento & desarrollo
3.
BMC Genomics ; 25(1): 535, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816837

RESUMEN

BACKGROUND: Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS: Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS: All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.


Asunto(s)
Cisteína , Glicina , Lagartos , Animales , Lagartos/genética , Lagartos/metabolismo , Glicina/metabolismo , Cisteína/metabolismo , Regulación del Desarrollo de la Expresión Génica , Escamas de Animales/metabolismo , Perfilación de la Expresión Génica
4.
Biol Lett ; 20(7): 20240171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955224

RESUMEN

Arboreality has evolved in all major vertebrate lineages and is often associated with morphological adaptations and increased diversification concomitant with accessing novel niche space. In squamate reptiles, foot, claw, and tail morphology are well-studied adaptations shown to be associated with transitions to arboreality. Here, we examined a less well understood trait-the keeled scale-in relation to microhabitat, climate, and diversification dynamics across a diverse lizard radiation, Agamidae. We found that the ancestral agamid had keeled dorsal but not ventral scales; further, dorsal and ventral keels are evolutionarily decoupled. Ventral keeled scales evolved repeatedly in association with arboreality and may be advantageous in reducing wear or by promoting interlocking when climbing. We did not find an association between keeled scales and diversification, suggesting keels do not allow finer-scale microhabitat partitioning observed in other arboreal-associated traits. We additionally found a relationship between keeled ventral scales and precipitation in terrestrial species where we posit that the keels may function to reduce scale degradation. Our results suggest that keeled ventral scales facilitated transitions to arboreality across agamid lizards, and highlight a need for future studies that explore their biomechanical function in relation to microhabitat and climate.


Asunto(s)
Evolución Biológica , Ecosistema , Lagartos , Animales , Lagartos/fisiología , Lagartos/anatomía & histología , Escamas de Animales/anatomía & histología , Escamas de Animales/fisiología , Filogenia , Clima
5.
Biol Lett ; 20(5): 20240041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773928

RESUMEN

Corneous skin appendages are not only common and diverse in crown-group amniotes but also present in some modern amphibians. This raises the still unresolved question of whether the ability to form corneous skin appendages is an apomorphy of a common ancestor of amphibians and amniotes or evolved independently in both groups. So far, there is no palaeontological contribution to the issue owing to the lack of keratin soft tissue preservation in Palaeozoic anamniotes. New data are provided by a recently discovered ichnofossil specimen from the early Permian of Poland that shows monospecific tetrapod footprints associated with a partial scaly body impression. The traces can be unambiguously attributed to diadectids and are interpreted as the globally first evidence of horned scales in tetrapods close to the origin of amniotes. Taking hitherto little-noticed scaly skin impressions of lepospondyl stem amniotes from the early Permian of Germany into account, the possibility has to be considered that the evolutionary origin of epidermal scales deeply roots among anamniotes.


Asunto(s)
Evolución Biológica , Epidermis , Fósiles , Animales , Fósiles/anatomía & histología , Epidermis/anatomía & histología , Anfibios/anatomía & histología , Anfibios/clasificación , Polonia , Escamas de Animales/anatomía & histología , Piel/anatomía & histología
6.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34230097

RESUMEN

Preexploitation shark baselines and the history of human impact on coral reef-associated shark communities in the Caribbean are tpoorly understood. We recovered shark dermal denticles from mid-Holocene (∼7 ky ago) and modern reef sediments in Bocas del Toro, Caribbean Panama, to reconstruct an empirical shark baseline before major human impact and to quantify how much the modern shark community in the region had shifted from this historical reference point. We found that denticle accumulation rates, a proxy for shark abundance, declined by 71% since the mid-Holocene. All denticle morphotypes, which reflect shark community composition, experienced significant losses, but those morphotypes found on fast-swimming, pelagic sharks (e.g., families Carcharhinidae and Sphyrnidae) declined the most. An analysis of historical records suggested that the steepest decline in shark abundance occurred in the late 20th century, coinciding with the advent of a targeted shark fishery in Panama. Although the disproportionate loss of denticles characterizing pelagic sharks was consistent with overfishing, the large reduction in denticles characterizing demersal species with low commercial value (i.e., the nurse shark Ginglymostoma cirratum) indicated that other stressors could have exacerbated these declines. We demonstrate that the denticle record can reveal changes in shark communities over long ecological timescales, helping to contextualize contemporary abundances and inform shark management and ecology.


Asunto(s)
Escamas de Animales , Arrecifes de Coral , Fósiles , Tiburones/fisiología , Escamas de Animales/citología , Escamas de Animales/fisiología , Animales , Región del Caribe , Conservación de los Recursos Naturales , Sedimentos Geológicos/química , Actividades Humanas , Humanos , Panamá , Tiburones/clasificación , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845021

RESUMEN

During metamorphosis, the wings of a butterfly sprout hundreds of thousands of scales with intricate microstructures and nano-structures that determine the wings' optical appearance, wetting characteristics, thermodynamic properties, and aerodynamic behavior. Although the functional characteristics of scales are well known and prove desirable in various applications, the dynamic processes and temporal coordination required to sculpt the scales' many structural features remain poorly understood. Current knowledge of scale growth is primarily gained from ex vivo studies of fixed scale cells at discrete time points; to fully understand scale formation, it is critical to characterize the time-dependent morphological changes throughout their development. Here, we report the continuous, in vivo, label-free imaging of growing scale cells of Vanessa cardui using speckle-correlation reflection phase microscopy. By capturing time-resolved volumetric tissue data together with nanoscale surface height information, we establish a morphological timeline of wing scale formation and gain quantitative insights into the underlying processes involved in scale cell patterning and growth. We identify early differences in the patterning of cover and ground scales on the young wing and quantify geometrical parameters of growing scale features, which suggest that surface growth is critical to structure formation. Our quantitative, time-resolved in vivo imaging of butterfly scale development provides the foundation for decoding the processes and biomechanical principles involved in the formation of functional structures in biological materials.


Asunto(s)
Escamas de Animales/anatomía & histología , Escamas de Animales/ultraestructura , Alas de Animales/anatomía & histología , Escamas de Animales/fisiología , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/metabolismo , Color , Lepidópteros/anatomía & histología , Lepidópteros/metabolismo , Metamorfosis Biológica , Morfogénesis , Pigmentación , Alas de Animales/fisiología , Alas de Animales/ultraestructura
8.
Dev Biol ; 477: 205-218, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089732

RESUMEN

Thyroid hormone is a key regulator of post-embryonic vertebrate development. Skin is a biomedically important thyroid hormone target organ, but the cellular and molecular mechanisms underlying skin pathologies associated with thyroid dysfunction remain obscure. The transparent skin of zebrafish is an accessible model system for studying vertebrate skin development. During post-embryonic development of the zebrafish, scales emerge in the skin from a hexagonally patterned array of dermal papillae, like other vertebrate skin appendages such as feathers and hair follicles. We show here that thyroid hormone regulates the rate of post-embryonic dermal development through interaction with nuclear hormone receptors. This couples skin development with body growth to generate a well ordered array of correctly proportioned scales. This work extends our knowledge of thyroid hormone actions on skin by providing in-vivo evidence that thyroid hormone regulates multiple aspects of dermal development.


Asunto(s)
Piel/crecimiento & desarrollo , Hormonas Tiroideas/fisiología , Pez Cebra/crecimiento & desarrollo , Escamas de Animales/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/fisiología , Morfogénesis
9.
Int J Clin Pharmacol Ther ; 60(5): 217-224, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35343429

RESUMEN

OBJECTIVE: The fraction of drug absorbed (Fa) from the intestine is an important parameter to characterize the pharmacokinetics of a drug. We aimed to search for an experimental system that provides the best parameters for estimating the effective permeability (Peff) used for the bottom-up prediction of Fa. MATERIALS AND METHODS: The absorption kinetics of 12 passively absorbed drugs were simulated by a compartment absorption transit (CAT) model using absorption parameters from four different experimental systems: human intestinal epithelial cell (HIEC) monolayer, Caco-2 monolayer, parallel artificial membrane permeability assay (PAMPA), and in situ rat intestinal perfusion. All absorption parameters were obtained from the literature. The in vitro apparent permeability coefficient (Papp) and rat in situ Peff were converted to human Peff using a bottom-up approach for each region, based on the morphological features of the human intestine. The simulated Fa values were compared to the respective observed values. Furthermore, plasma concentration profiles of the drugs were simulated by convolution using the time-course of the absorption rate simulated using the Peff values calculated from the HIEC Papp. RESULTS: The Fa values were best predicted by using the Peff values calculated from HEIC, within a 1.3-fold range of observed Fa in 11 out of 12 drugs. The simulated Cmax values of pharmacokinetic simulation using HIEC Papp fell within a 1.5-fold range of observed values for all the drugs examined. CONCLUSION: The HIEC monolayer was identified as the most suitable permeation parameter for estimating Fa and Cmax using a morphological feature-based bottom-up approach.


Asunto(s)
Escamas de Animales , Absorción Intestinal , Animales , Células CACO-2 , Tracto Gastrointestinal , Humanos , Intestinos , Membranas Artificiales , Ratas
10.
Proc Natl Acad Sci U S A ; 116(12): 5597-5606, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842287

RESUMEN

Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.


Asunto(s)
Escamas de Animales/metabolismo , Hormigas/fisiología , Equilibrio Hidroelectrolítico/fisiología , Escamas de Animales/crecimiento & desarrollo , Animales , Hidrocarburos , Insectos/metabolismo , Oxitocina/análogos & derivados , Oxitocina/metabolismo , Conducta Social , Vasopresinas/análisis , Vasopresinas/metabolismo , Agua/metabolismo
11.
J Anat ; 239(2): 451-478, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33748974

RESUMEN

Coelacanths have traditionally been described as morphologically conservative throughout their long evolutionary history, which spans more than 400 million years. After an initial burst during the Devonian, a morphological stasis was long thought to have prevailed since the Carboniferous, as shown by the extant Latimeria. New fossil discoveries have challenged this view, with punctual and sometimes unusual departures from the general coelacanth Bauplan. The dermal skeleton is considered to represent one, if not the main, example of morphological stasis in coelacanth evolution and as a consequence, has remained poorly surveyed. The lack of palaeohistological data on the dermoskeleton has resulted in a poor understanding of the early establishment and evolution of the coelacanth squamation. Here we describe the scales of Miguashaia bureaui from the Upper Devonian of Miguasha, Québec (Canada), revealing histological data for a Palaeozoic coelacanth in great detail and adding to our knowledge on the dermal skeleton of sarcopterygians. Miguashaia displays rounded scales ornamented by tubercules and narrow ridges made of dentine and capped with enamel. At least two generations of superimposed odontodes occur, which is reminiscent of the primitive condition of stem osteichthyans like Andreolepis or Lophosteus, and onychodonts like Selenodus. The middle vascular layer is well developed and shows traces of osteonal remodelling. The basal plate consists of a fully mineralised lamellar bone with a repetitive rotation pattern every five layers indicating a twisted plywood-like arrangement of the collagen plies. Comparisons with the extant Latimeria and other extinct taxa show that these features are consistently conserved across coelacanth evolution with only minute changes in certain taxa. The morphological and histological features displayed in the scales of Miguashaia enable us to draw a comprehensive picture of the onset of the coelacanth squamation and to propose and discuss evolutionary scenarios for the coelacanth dermoskeleton.


Asunto(s)
Escamas de Animales/ultraestructura , Evolución Biológica , Peces/anatomía & histología , Animales , Femenino , Peces/genética
12.
Opt Express ; 29(15): 23368-23380, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614603

RESUMEN

Photonic chip-based total internal reflection fluorescence microscopy (c-TIRFM) is an emerging technology enabling a large TIRF excitation area decoupled from the detection objective. Additionally, due to the inherent multimodal nature of wide waveguides, it is a convenient platform for introducing temporal fluctuations in the illumination pattern. The fluorescence fluctuation-based nanoscopy technique multiple signal classification algorithm (MUSICAL) does not assume stochastic independence of the emitter emission and can therefore exploit fluctuations arising from other sources, as such multimodal illumination patterns. In this work, we demonstrate and verify the utilization of fluctuations in the illumination for super-resolution imaging using MUSICAL on actin in salmon keratocytes. The resolution improvement was measured to be 2.2-3.6-fold compared to the corresponding conventional images.


Asunto(s)
Escamas de Animales/citología , Epidermis/diagnóstico por imagen , Iluminación , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Fluorescencia , Microscopía Fluorescente/instrumentación , Fotones , Salmón
13.
Fish Shellfish Immunol ; 108: 73-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285163

RESUMEN

A unique strain of Vibrio harveyi is the causative agent of scale drop and muscle necrosis disease (SDMND) in Asian sea bass (Lates calcarifer). This study investigated the protein profiles of SDMND-causing Vibrio harveyi isolates compared to the reference V. harveyi ATCC 14126 strain. A distinct protein band of 33 kDa, namely HP33, found from only V. harveyi SDMND was subjected to analysis by LC-MS/MS and the identified peptide sequences matched to an unknown hypothetical protein. Detection of HP33 coding sequence was investigated at both genomic and transcriptional levels and the results consistently supported the protein analysis. Recombinant HP33 protein was then produced using Escherichia coli system. The rHP33 protein did not cause mortality or visible clinical signs to Asian sea bass. However, the rHP33 protein was able to stimulate antibody response in Asian sea bass as evidenced by Western blotting and agglutination tests. Here, we proposed that rHP33 might be a good protein target for development of subunit vaccine and/or immunostimulant to protect Asian sea bass from SDMND.


Asunto(s)
Proteínas Bacterianas/genética , Lubina , Enfermedades de los Peces/inmunología , Inmunogenicidad Vacunal , Necrosis/veterinaria , Vibriosis/veterinaria , Vibrio/inmunología , Escamas de Animales/patología , Animales , Proteínas Bacterianas/inmunología , Enfermedades de los Peces/microbiología , Enfermedades Musculares/inmunología , Enfermedades Musculares/microbiología , Enfermedades Musculares/veterinaria , Necrosis/inmunología , Necrosis/microbiología , Vibrio/genética , Vibriosis/inmunología , Vibriosis/microbiología
14.
Mol Biol Rep ; 48(3): 2399-2410, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742327

RESUMEN

BACKGROUND: Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS: We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS: We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.


Asunto(s)
Carpas/genética , Análisis de Secuencia de ARN , Pigmentación de la Piel/genética , Transcriptoma/genética , Escamas de Animales/metabolismo , Animales , Secuencia Conservada/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma , Especificidad de Órganos/genética , Piel/metabolismo
15.
Zoolog Sci ; 38(2): 148-161, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812354

RESUMEN

We investigated the geographic diversification of Plestiodon finitimus, which occurs in the central to northern parts of the Japanese Islands, based on a time-calibrated mitochondrial DNA (mtDNA) phylogeny and external morphological characters. The mtDNA phylogeny suggests that P. finitimus diverged from its sister species Plestiodon japonicus in western Japan 2.82-4.63 million years ago (MYA), which can be explained by geographic isolation due to the spread of sedimentary basins in the Pliocene. The primary intraspecific divergence was that between P. finitimus lineages in central and northeastern Japan 1.58-2.76 MYA, which could have been caused by the upliftings of major mountain ranges. In the northeastern lineage, mtDNA and morphological characters suggest a geographic differentiation between sub-lineages of the northwestern Tohoku District (α) and other areas (ß). Although the sub-lineage ß occurs in a disjunct geographic range, consisting of Hokkaido and the central to south of Tohoku, these areas are bridged by populations with intermediate characteristics along the Pacific side of northern Tohoku. Overall, the geographic variation in P. finitimus in northern Japan can be explained by an initial allopatric divergence of the sub-lineages α and ß at 0.71-1.39 MYA, a recent northward expansion of the sub-lineage ß, and subsequent secondary introgressive hybridization between the sub-lineages.


Asunto(s)
Distribución Animal , ADN Mitocondrial/genética , Lagartos/fisiología , Escamas de Animales/anatomía & histología , Animales , Japón , Lagartos/anatomía & histología , Lagartos/genética , Filogenia , Filogeografía
16.
Biochemistry (Mosc) ; 86(10): 1192-1200, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34903151

RESUMEN

Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.


Asunto(s)
Escamas de Animales/efectos de los fármacos , Carpa Dorada/metabolismo , Omeprazol/farmacología , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Escamas de Animales/citología , Escamas de Animales/metabolismo , Animales , Antiulcerosos/farmacología , Calcio/metabolismo , Linfocinas/metabolismo , Modelos Animales , Osteoblastos/metabolismo , Osteoclastos/metabolismo
17.
Mar Drugs ; 19(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822468

RESUMEN

Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the "salting out" effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.


Asunto(s)
Colágeno/química , Peces , Escamas de Animales , Animales , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Solubilidad , Temperatura
18.
Mar Drugs ; 19(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068988

RESUMEN

Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics.


Asunto(s)
Antioxidantes/farmacología , Cíclidos , Gelatina/química , Gelatina/farmacología , Escamas de Animales/química , Animales , Antioxidantes/química , Fenómenos Químicos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cromatografía de Fase Inversa , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Gelatina/aislamiento & purificación , Hidrólisis , Peso Molecular , Péptido Hidrolasas/química , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem , Extractos de Tejidos/análisis , Extractos de Tejidos/química , Extractos de Tejidos/aislamiento & purificación , Extractos de Tejidos/farmacología
19.
J Fish Dis ; 44(4): 461-467, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33118189

RESUMEN

Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.


Asunto(s)
Lubina , Copépodos/virología , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/epidemiología , Iridoviridae/aislamiento & purificación , Trematodos/virología , Escamas de Animales/virología , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Prevalencia , Tailandia/epidemiología
20.
J Fish Biol ; 98(1): 17-32, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32964432

RESUMEN

The elasmoid scales of anadromous sea trout Salmo trutta L. represent a significant internal reservoir of Ca2+ . Although more is known about long-term remodelling of scales in response to calciotropic challenges encountered during smoltification and migration, very little is known about the contribution made by scales to the short-term, minute-to-minute regulation of Ca2+ homeostasis in the extracellular fluid (ECF) during these phases of the life cycle. This gap in the knowledge is partly due to the technical challenges involved in measuring small Ca2+ fluxes around the scales of live fish in real time. Here, this study describes exfoliating, mounting and culturing scales and their resident cells from parr, smolt and adult sea trout from a freshwater environment, as well as from adult sea trout caught in sea or brackish water. All the scales were then examined using an extracellular, non-invasive, surface-scanning Ca2+ -sensitive microelectrode. The authors quantified the Ca2+ fluxes, in the absence of any systemic or local regulators, into and out of scales on both the episquamal and hyposquamal sides under different extracellular calcemic challenges set to mimic a variety of ECF-Ca2+ concentrations. Scales from the life-cycle stages as well as from adult fish taken from sea, brackish or fresh water all showed a consistent efflux or influx of Ca2+ under hypo- or hypercalcemic conditions, respectively. What were considered to be isocalcemic conditions resulted in minimal flux of Ca2+ in either direction, or in the case of adult scales, a consistent but small influx. Indeed, adult scales appeared to display the largest flux densities in either direction. These new data extend the current understanding of the role played by fish scales in the short-term, minute-to-minute homeostatic regulation of ECF-Ca2+ concentration, and are similar to those recently reported from zebrafish Danio rerio scales. This suggests that this short-term regulatory response might be a common feature of teleost scales.


Asunto(s)
Migración Animal/fisiología , Escamas de Animales/metabolismo , Calcio/metabolismo , Líquido Extracelular/química , Homeostasis , Trucha/fisiología , Animales , Calcio/sangre , Agua Dulce , Agua de Mar , Trucha/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA