Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(25): 6138-6156.e28, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890552

RESUMEN

How the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds. One cell type, comprising a chemical reservoir within the abdomen, produces alkane and ester compounds. We demonstrate that this cell type is a hybrid of cuticle cells and ancient pheromone and adipocyte-like cells, executing its function via a mosaic of enzymes from each parental cell type. The second cell type synthesizes benzoquinones using a chimera of conserved cellular energy and cuticle formation pathways. We show that evolution of each cell type was shaped by coevolution between the two cell types, yielding a potent secretion that confers adaptive value. Our findings illustrate how cooperation between cell types arises, generating new, organ-level behaviors.


Asunto(s)
Benzoquinonas/metabolismo , Escarabajos/metabolismo , Drosophila melanogaster/metabolismo , Feromonas/metabolismo , Animales , Evolución Biológica , Vías Biosintéticas
2.
Proc Natl Acad Sci U S A ; 121(26): e2322927121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885386

RESUMEN

RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.


Asunto(s)
Escarabajos , Citosol , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , ARN Bicatenario , Proteínas de Unión al ARN , Animales , Retículo Endoplásmico/metabolismo , ARN Bicatenario/metabolismo , Citosol/metabolismo , Escarabajos/metabolismo , Escarabajos/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Interferencia de ARN , Transporte Biológico
3.
Dev Biol ; 509: 70-84, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373692

RESUMEN

Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.


Asunto(s)
Escarabajos , Metamorfosis Biológica , Morfogénesis , Factores de Transcripción , Tribolium , Animales , Escarabajos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles , Larva/metabolismo , Metamorfosis Biológica/genética , Morfogénesis/genética , Pupa/metabolismo , Factores de Transcripción/metabolismo , Tribolium/genética , Regeneración/genética
4.
Proc Natl Acad Sci U S A ; 119(33): e2205564119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943983

RESUMEN

Male-female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male-female coevolution.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Escarabajos , Conducta Sexual Animal , Animales , Escarabajos/metabolismo , Femenino , Masculino , Filogenia , Reproducción
5.
Proc Natl Acad Sci U S A ; 119(30): e2201089119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858446

RESUMEN

Many insects enter a state of dormancy (diapause) during winter in which they lower their metabolism to save energy. Metabolic suppression is a hallmark of diapause, yet we know little about the mechanisms underpinning metabolic suppression in winter or how it is reversed in the spring. Here, we show that metabolic suppression in dormant Colorado potato beetles results from the breakdown of flight muscle mitochondria via mitophagy. Diapausing Colorado potato beetles suppress their metabolism by 90%, and this lowered metabolic rate coincides with a similar reduction in flight muscle mitochondrial function and density. During early diapause, beetles increase the expression of mitophagy-related transcripts (Parkin and ATG5) in their flight muscle coincident with an increase in mitophagy-related structures in the flight muscle. Knocking down Parkin expression with RNA interference in diapausing beetles prevented some mitochondrial breakdown and partially restored the whole animal metabolic rate, suggesting that metabolic suppression in diapausing beetles is driven by mitophagy. In other animals and in models of disease, such large-scale mitochondrial degradation is irreversible. However, we show that as diapause ends, beetles reverse mitophagy and increase the expression of PGC1α and NRF1 to replenish flight muscle mitochondrial pools. This mitochondrial biogenesis is activated in anticipation of diapause termination and in the absence of external stimuli. Our study provides a mechanistic link between mitochondrial degradation in insect tissues over the winter and whole-animal metabolic suppression.


Asunto(s)
Escarabajos , Diapausa de Insecto , Mitofagia , Animales , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Escarabajos/metabolismo , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
New Phytol ; 243(1): 240-257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725421

RESUMEN

Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.


Asunto(s)
Antocianinas , Flores , Regulación de la Expresión Génica de las Plantas , Pigmentación , Factores de Transcripción , Antocianinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flores/metabolismo , Flores/genética , Pigmentación/genética , Animales , Escarabajos/metabolismo , Escarabajos/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Filogenia
7.
Mol Reprod Dev ; 91(5): e23745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785179

RESUMEN

Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.


Asunto(s)
Escarabajos , Proteoma , Animales , Escarabajos/metabolismo , Masculino , Proteoma/metabolismo , Proteoma/análisis , Femenino , Proteómica/métodos , Filogenia , Proteínas de Insectos/metabolismo , Proteínas de Insectos/análisis , Espermatozoides/metabolismo
8.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680096

RESUMEN

The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.


Asunto(s)
Escarabajos , Drosophila melanogaster , Metabolismo Energético , Animales , Abejas/enzimología , Abejas/metabolismo , Abejas/fisiología , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Escarabajos/enzimología , Escarabajos/metabolismo , Escarabajos/fisiología , Calor
9.
Photochem Photobiol Sci ; 23(4): 719-729, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441849

RESUMEN

The bioluminescence system of luminescent beetles has extensive applications in biological imaging, protein labeling and drug screening. To explore wild luciferases with excellent catalytic activity and thermal stability, we cloned the luciferase of Pygoluciola qingyu, one species living in areas of high temperature and with strong bioluminescence, by combining transcriptomic sequencing and reverse transcription polymerase chain reaction (RT-PCR). The total length of luciferase gene is 1638 bp and the luciferase consists 544 amino acids. The recombinant P. qingyu luciferase was produced in vitro and its characteristics were compared with those of eight luciferases from China firefly species and two commercial luciferases. Compared with these luciferases, the P. qingyu luciferase shows the highest luminescence activity at room temperature (about 25-28 â„ƒ) with similar KM value for D-luciferin and ATP to the Photinus pyralis luciferase. The P. qingyu luciferase activity was highest at 35 â„ƒ and can keep high activity at 30-40 â„ƒ, which suggests the potential of P. qingyu luciferase for in vivo and cell application. Our results provide new insights into P. qingyu luciferase and give a new resource for the application of luciferases.


Asunto(s)
Escarabajos , Luciérnagas , Animales , Luciérnagas/genética , Escarabajos/genética , Escarabajos/metabolismo , Secuencia de Aminoácidos , Luciferasas/química , Luciferasas de Luciérnaga/metabolismo , Clonación Molecular , Mediciones Luminiscentes
10.
Arch Insect Biochem Physiol ; 115(1): e22072, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288486

RESUMEN

Dried fruit beetle, Carpophilus hemipterus (Linnaeus, 1758) (Coleoptera: Nitidulidae), is a serious pest of ripened fresh fruit in the orchard and dried fruit in postprocessing storage. Despite the economic impact and widespread distribution of C. hemipterus, there is a lack of functional genomics research seeking to elucidate features of molecular physiology for improved pest management. Here, we report the characterization of the gene named Vermilion in C. hemipterus (ChVer) that encodes for tryptophan 2,3-dioxygenase. The Vermilion is frequently used as a visual marker for genomics approaches as tryptophan 2,3-dioxygenase is involved in the biosynthesis of eye coloration pigments in insects. We identified 1628 bp long full-length transcript of ChVer from transcriptomic database of C. hemipterus. The expression analysis among adult body parts revealed peak ChVer expression in head compared to thorax and abdomen, which is consistent with its role. Among the C. hemipterus developmental stages, peak ChVer expression was observed in first instar larva, second instar larva, and adult male stages, whereas the lowest levels of expression were seen in third instar larva, prepupa, and pupa. The nanoinjection of ChVer double-stranded RNA in larval C. hemipterus resulted in a significant reduction in ChVer transcript levels as well as caused a loss of eye color, that is, the white-eyed phenotype in adults. Characterization of visually traceable marker gene and robust RNA interference response seen in this study will enable genomics research is this important pest.


Asunto(s)
Escarabajos , Dioxigenasas , Masculino , Animales , Escarabajos/genética , Escarabajos/metabolismo , Triptófano Oxigenasa/genética , Triptófano/genética , Triptófano/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Interferencia de ARN , Larva/genética
11.
PLoS Genet ; 17(2): e1009352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529191

RESUMEN

Diapause, a programmed developmental arrest primarily induced by seasonal environmental changes, is very common in the animal kingdom, and found in vertebrates and invertebrates alike. Diapause provides an adaptive advantage to animals, as it increases the odds of surviving adverse conditions. In insects, individuals perceive photoperiodic cues and modify endocrine signaling to direct reproductive diapause traits, such as ovary arrest and increased fat accumulation. However, it remains unclear as to which endocrine factors are involved in this process and how they regulate the onset of reproductive diapause. Here, we found that the long day-mediated drop in the concentration of the steroid hormone ecdysone is essential for the preparation of photoperiodic reproductive diapause in Colaphellus bowringi, an economically important cabbage beetle. The diapause-inducing long-day condition reduced the expression of ecdysone biosynthetic genes, explaining the drop in the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in female adults. Application of exogenous 20E induced vitellogenesis and ovarian development but reduced fat accumulation in the diapause-destined females. Knocking down the ecdysone receptor (EcR) in females destined for reproduction blocked reproductive development and induced diapause traits. RNA-seq and hormone measurements indicated that 20E stimulates the production of juvenile hormone (JH), a key endocrine factor in reproductive diapause. To verify this, we depleted three ecdysone biosynthetic enzymes via RNAi, which confirmed that 20E is critical for JH biosynthesis and reproductive diapause. Importantly, impairing Met function, a component of the JH intracellular receptor, partially blocked the 20E-regulated reproductive diapause preparation, indicating that 20E regulates reproductive diapause in both JH-dependent and -independent manners. Finally, we found that 20E deficiency decreased ecdysis-triggering hormone signaling and reduced JH production, thereby inducing diapause. Together, these results suggest that 20E signaling is a pivotal regulator that coordinates reproductive plasticity in response to environmental inputs.


Asunto(s)
Escarabajos/genética , Diapausa/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fotoperiodo , Animales , Escarabajos/metabolismo , Ecdisterona/metabolismo , Femenino , Hormonas Juveniles/deficiencia , Hormonas Juveniles/genética , Metamorfosis Biológica/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Reproducción/genética , Transducción de Señal
12.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458690

RESUMEN

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Asunto(s)
Escarabajos , Insecticidas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Tobillo , Rotenona , Escarabajos/genética , Escarabajos/metabolismo , Insectos/genética , Transcriptoma , Filogenia , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo , Perfilación de la Expresión Génica
13.
Pestic Biochem Physiol ; 202: 105969, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879313

RESUMEN

Populus pseudo-cathayana × Populus deltoides is a crucial artificial forest tree species in Northeast China. The presence of the fall webworm (Hyphantria cunea) poses a significant threat to these poplar trees, causing substantial economic and ecological damage. This study conducted an insect-feeding experiment with fall webworm on P. pseudo-cathayana × P. deltoides, examining poplar's physiological indicators, transcriptome, and metabolome under different lengths of feeding times. Results revealed significant differences in phenylalanine ammonia-lyase activity, total phenolic content, and flavonoids at different feeding durations. Transcriptomic analysis identified numerous differentially expressed genes, including AP2/ERF, MYB, and WRKY transcription factor families exhibiting the highest expression variations. Differential metabolite analysis highlighted flavonoids and phenolic acid compounds of poplar's leaves as the most abundant in our insect-feeding experiment. Enrichment analysis revealed significant enrichment in the plant hormone signal transduction and flavonoid biosynthetic pathways. The contents of jasmonic acid and jasmonoyl-L-isoleucine increased with prolonged fall webworm feeding. Furthermore, the accumulation of dihydrokaempferol, catechin, kaempferol, and naringenin in the flavonoid biosynthesis pathway varied significantly among different samples, suggesting their crucial role in response to pest infestation. These findings provide novel insights into how poplar responds to fall webworm infestation.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Animales , Flavonoides/metabolismo , Escarabajos/fisiología , Escarabajos/metabolismo , Oxilipinas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Ciclopentanos/metabolismo , Hojas de la Planta/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Mariposas Nocturnas/genética , Mariposas Nocturnas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473803

RESUMEN

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Asunto(s)
Escarabajos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Tribolium , Animales , Tribolium/genética , Escarabajos/metabolismo , Ácido Mevalónico/metabolismo , Hormonas Juveniles/metabolismo
15.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674140

RESUMEN

During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.


Asunto(s)
Escarabajos , Ecdisona , Interferencia de ARN , Receptores de Esteroides , Transducción de Señal , Animales , Escarabajos/metabolismo , Escarabajos/genética , Femenino , Ecdisona/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Oviposición/efectos de los fármacos , Cáscara de Huevo/metabolismo , Ovario/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674138

RESUMEN

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Asunto(s)
Escarabajos , Proteínas de Insectos , Receptores Odorantes , Transcriptoma , Animales , Escarabajos/genética , Escarabajos/metabolismo , Escarabajos/crecimiento & desarrollo , Masculino , Femenino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Perfilación de la Expresión Génica , Antenas de Artrópodos/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
17.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673947

RESUMEN

Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.


Asunto(s)
Monoterpenos Bicíclicos , Escarabajos , Receptores Odorantes , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/metabolismo , Monoterpenos Bicíclicos/farmacología , Escarabajos/efectos de los fármacos , Escarabajos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Simulación del Acoplamiento Molecular , Monoterpenos/química , Monoterpenos/farmacología , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
18.
Dev Biol ; 483: 98-106, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999052

RESUMEN

Harmonia axyridis presents remarkable appendage regeneration capacity and can therefore be considered as an emerging regeneration research model. Amino acid sequences of the Janus kinase Hopscotch (Hahop) and the transcription factor STAT (HaStat), the main components of the JAK/STAT signaling pathway, conserved with their homologs in other models. The expression levels of these two genes were continuously up-regulated during the appendage regeneration process. To identify the functions of JAK/STAT signaling, we performed RNAi experiments of Hahop and HaStat in H. axyridis, and found regeneration defects following in HahopRNAi and HaStatRNAi treatments at different regeneration stages. Additionally, we confirmed that regeneration defects caused by the low-level of JAK/STAT activity were due to the inhibition of cell proliferation. The results of the current study suggest that JAK/STAT signaling regulates the entire regeneration process by coordinating cell proliferation of regenerating appendages.


Asunto(s)
Proliferación Celular/genética , Escarabajos/metabolismo , Miembro Posterior/metabolismo , Quinasas Janus/metabolismo , Regeneración/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética , Animales , Escarabajos/genética , Quinasas Janus/genética , Larva/genética , Larva/metabolismo , Interferencia de ARN , Factores de Transcripción STAT/genética , Regulación hacia Arriba/genética
19.
Photochem Photobiol Sci ; 22(4): 893-904, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36681778

RESUMEN

Beetle luciferases were classified into three functional groups: (1) pH-sensitive yellow-green-emitting (fireflies) which change the bioluminescence color to red at acidic pH, high temperatures and presence of heavy metals; (2) the pH-insensitive green-yellow-emitting (click beetles, railroad worms and firefly isozymes) which are not affected by these factors, and (3) pH-insensitive red-emitting. Although the pH-sensing site in firefly luciferases was recently identified, it is unclear why some luciferases are pH-insensitive despite the presence of some conserved pH-sensing residues. Through circular dichroism, we compared the secondary structural changes and unfolding temperature of luciferases of representatives of these three groups: (1) pH-sensitive green-yellow-emitting Macrolampis sp2 (Mac) and Amydetes vivianii (Amy) firefly luciferases; (2) the pH-insensitive green-emitting Pyrearinus termitilluminans larval click beetle (Pte) and Aspisoma lineatum (Al2) larval firefly luciferases, and (3) the pH-insensitive red-emitting Phrixotrix hirtus railroadworm (PxRE) luciferase. The most blue-shifted luciferases, independently of pH sensitivity, are thermally more stable at different pHs than the red-shifted ones. The pH-sensitive luciferases undergo increases of α-helices and thermal stability above pH 6. The pH-insensitive Pte luciferase secondary structure remains stable between pH 6 and 8, whereas the Al2 luciferase displays an increase of the ß-sheet at pH 8. The PxRE luciferase also displays an increase of α-helices at pH 8. The results indicate that green-yellow emission in beetle luciferases can be attained by: (1) a structurally rigid scaffold which stabilizes a single closed active site conformation in the pH-insensitive luciferases, and (2) active site compaction above pH 7.0 in the more flexible pH-sensitive luciferases.


Asunto(s)
Escarabajos , Animales , Escarabajos/metabolismo , Luciferasas de Luciérnaga/metabolismo , Secuencia de Aminoácidos , Luciferasas/química , Luciérnagas , Mediciones Luminiscentes
20.
Environ Sci Technol ; 57(8): 3031-3041, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790312

RESUMEN

Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Larva/metabolismo , Tenebrio/metabolismo , Polietileno , Poliestirenos , Carbono/metabolismo , Escarabajos/metabolismo , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA