RESUMEN
Health authorities are particularly concerned about water security in Enugu, southeast Nigeria and heavy metal (HM) pollution. The HM profiles of 51 samples collected from 17 different commercial bottled water brands in Enugu were examined using an flame atomic absorption spectroscopy. Cd, Cr, Cu, Pb, Ni, and Zn had mean values of 0.15 ± 0.03, 0.03 ± 0.02, 0.16 ± 0.03, 0.13 ± 0.02, and 0.02 ± 0.01 mg/L, respectively. The highest levels of Pb2+ were 0.27 mg/L in Exalté, Ni2+ 0.26 mg/L in Jasmine, Cd2+ 0.36 mg/L in Ezbon, Cr3+ 0.07 mg/L in Trinity, Cu2+ 0.04 mg/L in Bigi, and Zn2+ 0.02 mg/L in Aquarapha. The amounts of Cr, Cu, and Zn were below the allowable limits; nevertheless, the Pb content in eight bottled water samples exceeded both the Nigerian and World Health Organization (WHO)/U.S. Environmental Protection Agency (USEPA) permissible limits. The Cd2+ and Ni2+ levels in the 11th and 4th bottled water samples were above the WHO/USEPA-approved limits. Statistical evaluation revealed significant differences in the amounts of HM ions in the samples (p < 0.05). The findings indicated that concentration levels of Cd2+ Ni2+, and Pb2+ pose a public health concern that needs to be addressed due to potential risk to consumer health.
Asunto(s)
Agua Potable , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Nigeria , Agua Potable/análisis , Agua Potable/química , Contaminantes Químicos del Agua/análisis , Humanos , Monitoreo del Ambiente , Medición de Riesgo , Espectrofotometría AtómicaRESUMEN
INTRODUCTION: Nowadays, food safety is regarded as one of the most critical global public health issues. Edible oil, a key ingredient in food processing, is widely used and consumed in every Ethiopian household. However, its safety is often overlooked. Currently, edible oil is produced in Ethiopia from small-scale operations to large industrial levels, as well as imported from other countries. OBJECTIVE: This study aimed to determine the levels of heavy metals and essential minerals in edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. METHODS: A laboratory-based cross-sectional study was conducted from May to July 2021 in Gondar City. Seventeen edible oil samples were collected using simple random sampling techniques. Heavy metal content was determined using an atomic absorption spectrophotometer with the standard procedures and techniques after microwave digestion. The efficiency and validity of the method used were evaluated by determining the limit of detection (LOD), the limit of quantification (LOQ), accuracy, and precision. The collected data were entered into Microsoft Excel and transported to Stata for analysis. RESULT: A total of seventeen vegetable oil samples were analyzed. The accuracy of the method was evaluated by recovery studies, which ranged from 81 to 115%, and the relative standard deviations were found to be below 15%. The concentrations of Zn, Cu, Fe, Cd, and Pb were in the range of 0.07 to 0.8 mg/l, 0.002 to 0.06 mg/l, 0.01 to 0.8 mg/l, 0.08 to 0.18 mg/l, and 0.003 to 0.27 mg/l, respectively. In general, the lead and cadmium content was higher than other metals in some of the investigated edible vegetable oils. Most values fell within the permissible quality limits for edibility as prescribed by the World Health Organization (WHO) and the National Agency for Food and Drug Administration and Control (NAFDAC). However, the levels of Pb and Cd exceeded the reference levels in some locally produced vegetable oils. CONCLUSION: To address the exceeded levels of heavy metals, it is imperative to implement more careful handling, processing of raw materials, and filtering practices. Producers and marketers should take the necessary precautions to prevent contamination. Strict regulatory control from responsible bodies and stakeholders is recommended to ensure the safety and metal contents of vegetable oils originating from the study area.
Asunto(s)
Metales Pesados , Aceites de Plantas , Metales Pesados/análisis , Etiopía , Aceites de Plantas/química , Estudios Transversales , Humanos , Minerales/análisis , Espectrofotometría Atómica , Contaminación de Alimentos/análisisRESUMEN
Interest in measuring major and trace elements in plants has increased in recent years because of growing concerns about the elements' contribution to daily intakes or the health risks posed by ingesting vegetables contaminated by potentially toxic elements. The recent advances in using inductively coupled plasma atomic emission spectrometry (ICP-OES) to measure major and trace elements in plant samples are reviewed in the present work. The sample preparation before instrumental determination and the main advantages and limitations of ICP-OES are described. New trends in element extraction in liquid solutions using fewer toxic solvents and microextractions are observed in recently published literature. Even though ICP-OES is a well-established and routine technique, recent innovations to increase its performance have been found. Validated methods are needed to ensure the obtaining of reliable results. Much research has focused on assessing principal figures of merit, such as limits of detection, quantification, selectivity, working ranges, precision in terms of repeatability and reproducibility, and accuracy through spiked samples or certified reference materials analysis. According to the published literature, the ICP-OES technique, 50 years after the release of the first commercially available equipment, remains a powerful and highly recommended tool for element determination on a wide range of concentrations.
Asunto(s)
Plantas , Espectrofotometría Atómica , Oligoelementos , Oligoelementos/análisis , Espectrofotometría Atómica/métodos , Plantas/química , Reproducibilidad de los ResultadosRESUMEN
The Chinese yam (Dioscorea polystachya, DP) is promising for the food and pharmaceutical industries due to its nutritional value and pharmaceutical potential. Its proper cultivation is therefore of interest. An insufficient supply of minerals necessary for plant growth can be manifested by discoloration of the leaves. In our earlier study, magnesium deficiency was excluded as a cause. As a follow-up, this work focused on manganese and molybdenum. To quantify both minerals in leaf extracts of DP, analytical methods based on atomic absorption spectrometry (AAS) using the graphite furnace sub-technique were devised. The development revealed that the quantification of manganese works best without using any of the investigated modifiers. The optimized pyrolysis and atomization temperatures were 1300 °C and 1800 °C, respectively. For the analysis of molybdenum, calcium proved to be advantageous as a modifier. The optimum temperatures were 1900 °C and 2800 °C, respectively. Both methods showed satisfactory linearity for analysis. Thus, they were applied to quantify extracts from normal and discolored leaves of DP concerning the two minerals. It was found that discolored leaves had higher manganese levels and a lower molybdenum content. With these results, a potential explanation for the discoloration could be found.
Asunto(s)
Dioscorea , Manganeso , Molibdeno , Hojas de la Planta , Espectrofotometría Atómica , Molibdeno/análisis , Molibdeno/química , Manganeso/análisis , Hojas de la Planta/química , Espectrofotometría Atómica/métodos , Dioscorea/química , Extractos Vegetales/química , Extractos Vegetales/análisisRESUMEN
The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.
Asunto(s)
Antibacterianos , Espectrofotometría Atómica , Antibacterianos/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Espectrofotometría Atómica/métodosRESUMEN
Aluminum is a prevalent element in nature, but bioavailable forms of aluminum are toxic to plants, animals, and humans. The present study is dedicated to the development of an ecologically friendly, fast, simple, reliable, sensitive, and accurate improved procedure for the determination of subtrace concentrations of bioavailable forms of aluminum in natural waters. The procedure includes the separation and pre-concentration of bioavailable forms of aluminum using vortex-assisted liquid-liquid microextraction (VALLME) of ionic associates with salicylaldehyde 4-picolinhydrazone (SAPH) and sodium dodecyl sulfate (DDSNa) by isoamylacetate (200 µl) and direct electrothermal atomic absorption spectroscopy (ET AAS). The SAPH reagent interacts only with water-soluble forms of aluminum. SAPH is used for the pre-concentration of bioavailable forms of aluminum as well as a chemical modifier; it increases the absorbance and the precision of the analytical signal of aluminum. The calibration curve shows the linear dependence in the range of 0.05-86 µgâ L-1 of the aluminum concentration (R2 = 0.992), with the limit of detection at 0.015 µgâ L-1 and the limit of quantification at 0.05 µgâ L-1. The accuracy of the proposed procedure for bioavailable forms of aluminum determination was verified on model solutions and against a reference method on natural samples of river and lake waters (RSD 3.2-5.2%, recovery 97.1-103.4%).
Asunto(s)
Aluminio , Microextracción en Fase Líquida , Espectrofotometría Atómica , Contaminantes Químicos del Agua , Espectrofotometría Atómica/métodos , Microextracción en Fase Líquida/métodos , Aluminio/química , Aluminio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Tecnología Química Verde/métodos , Límite de Detección , Agua Dulce/química , Dodecil Sulfato de Sodio/químicaRESUMEN
Heavy metal contamination in the soil and phytoremediation potential of the plants cultivated around the Gosa dumpsite were evaluated using pollution indices. The concentrations of heavy metals in the soil and plant samples were determined using an atomic absorption spectrophotometer (Agilent 280FS AA). The mean heavy metal contents in the upper and lower soil layers ranged from 0.37 to 1662.61 mg/kg and 0.32 to 1608.61 mg/kg, respectively, in ascending order of Cd < Cr < Cu < Ni < Pb < Co < Zn < Fe. The results revealed a steady depthwise decrease in heavy metal contents from the upper to lower soil layers. Co, Pb, Zn and Fe were introduced through geogenic and anthropogenic pathways, while Cr, Ni, Cu and Cd were derived mainly from anthropogenic sources. The mean soil enrichment in the heavy metals ranged from 0.96 to 237.04 in the ascending order of Fe > Co > Pb > Zn > Cu > Cd > Cr > Ni. The soil was moderately polluted with Co, Cu, Pb, Zn, Fe and Cd but heavily polluted with Cr and Ni. The results revealed that 37.5% of the sites studied had pollution load indices greater than 1.0, indicating gradual deterioration in overall soil quality. The concentrations of Pb, Cd and Fe exceeded the recommended limits for the five plant species assessed. The transfer factor (TF) values of okra plant 1 (0.7536), water hyacinth (1.3768), and Amaranthus hybridus (0.9783) indicated excellent Cd phytoremediation potential. Okra Plant, water hyacinth and Amaranthus hybridus had excellent potential for phytoremediation of Cu, Fe and Pb, respectively. The study area was strongly enriched in Fe, Cd, Cr, and Ni, suggesting some degree of soil pollution, while the plants demonstrated an excellent capacity to accumulate Cd, Cu, Fe and Pb. This dumpsite should be adequately monitored while proper remediation measures are adopted by government authorities.
Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Nigeria , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Monitoreo del Ambiente , Suelo/química , Plantas/metabolismo , Plantas/química , Espectrofotometría AtómicaRESUMEN
The attendant effects of urbanization on the environment and human health are evaluable by measuring the potentially harmful element (PHE) concentrations in environmental media such as stream sediments. To evaluate the effect of urbanization in Osogbo Metropolis, the quality of stream sediments from a densely-populated area with commercial/industrial activities was contrasted with sediments from a sparsely-populated area with minimal anthropogenic input.Forty samples were obtained: 29 from Okoko stream draining a Residential/Commercial Area (RCA, n = 14) and an Industrial Area (IA, n = 15), and 11 from Omu stream draining a sparsely-populated area (SPA). The samples were air-dried, sieved to < 75 micron fraction, and analysed for PHEs using inductively-coupled plasma atomic emission spectrometry (ICP-AES). Index of geoaccumulation (Igeo), pollution index (PI), ecological risk factor (Er) and index (ERI) were used for assessment. Inter-elemental relationships and source identification were done using Pearson's correlation matrix and principal component analysis (PCA).PHE concentrations in the stream sediments were RCA: Zn > Pb > Cu > Cr > Sr > Ni > Co, IA: Zn > Cr > Ni > Co > Pb > Cu > Sr and SPA: Zn > Co > Cr > Cu > Sr > Ni > Pb. Igeo calculations revealed moderate-heavy contamination of Cu, Pb and Zn in parts of RCA, moderate-heavy contamination of Zn in IA while SPA had moderate contamination of Co and Zn. PI values revealed that stream sediments of RCA are extremely polluted, while those of IA and SPA are moderately and slightly polluted, respectively.The pollution of the stream sediments in RCA and IA is adduced to anthropogenic activities like vehicular traffic, automobile repairs/painting, blacksmithing/welding and metal scraping. In SPA however, the contamination resulted from the application of herbicides/fertilizers for agricultural purposes.
Asunto(s)
Sedimentos Geológicos , Ríos , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Nigeria , Ríos/química , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Urbanización , Análisis de Componente Principal , Ciudades , Espectrofotometría AtómicaRESUMEN
The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.
Asunto(s)
Antimonio , Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Antimonio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Espectrofotometría Atómica/métodos , Residuos Electrónicos/análisis , Residuos Industriales/análisisRESUMEN
In the present study the concentration of selected elements in tissues of domestic rabbits and of wild brown-hares (kidneys, liver, and muscle - m. quadriceps femoris) in Slovakian habitats were determined. After mineralization the elements examined were detected using flame atomic absorption spectrophotometry/graphite furnace atomic absorption spectrophotometry. For rabbits, Fe in the liver was correlated with essential (Mn, Cu) (R2 = 0.94, p < 0.05; R2 = 0.96, p < 0.05 respectively) or toxic (Pb) elements (R2 = -0.93, p < 0.05). For hares, significant correlations were found between Cd and Cu or between Cd and Mn in the kidneys (R2 = -0.96, p < 0.05; R2 = 0.92, p < 0.05 respectively), which is the target organ for Cd. Higher concentrations of the elements were found in hare tissue, and this may be linked to pollution of their wild habitats. The xenobiotic elements as well as the essential elements were accumulated in the kidneys of the hares than rabbits. For liver, differences were less pronounced and significance was only for Fe and Cu. Muscle of hares was more contaminated than of rabbits for both biogenic and toxic elements. These results show that detectable concentrations of inorganic elements. These levels may be linked to contamination of the natural habitats of wild biota due to industry, traffic, agriculture, and urban sprawl.
Asunto(s)
Liebres , Riñón , Hígado , Animales , Conejos , Riñón/metabolismo , Riñón/química , Hígado/metabolismo , Liebres/metabolismo , Músculos/metabolismo , Músculos/química , Eslovaquia , Monitoreo del Ambiente , Espectrofotometría Atómica , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismoRESUMEN
In the present paper, the assessment of vortex-assisted dispersive magnetic solid-phase extraction using amino-functionalized mesoporous combined with direct magnetic sorbent sampling (DMSS) in flame or furnace atomic absorption spectrometry (FAAS or FF-AAS) was demonstrated for highly sensitive silver determination in water samples. The developed method showed significant enrichment factors compared to conventional pneumatic nebulization by FAAS, 607 for DMSS-FF-AAS and 114 for DMSS-FAAS. The analytical curve showed linearity in the range from 5.0 to 70.0 µg L- 1 and 1.0 to 15.0 µg L- 1 and limits of detection of 0.59 and 0.09 µg L- 1 for DMSS-FAAS and DMSS-FF-AAS, respectively. The intra and inter-day precision evaluated as a percentage of the relative standard deviation (RSD,%) ranged from 1.89 to 4.71% for levels of 25.0 and 65.0 µg L- 1. The method was applied in different kinds of water samples without matrix effects, yielding recovery values from 90 to 110%.
Asunto(s)
Plata , Extracción en Fase Sólida , Espectrofotometría Atómica , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Plata/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Límite de DetecciónRESUMEN
OBJECTIVE: To understand the mineral content of freshwater fish produced in Shaanxi Province and evaluate its related nutritional value. METHODS: According to the 2021 Shaanxi Provincial nutrition monitoring plan, the 9 mineral contents of 13 varieties of freshwater fish, produced in Shaanxi province, were determined by inductively coupled plasma atomic emission spectrometry. The nutritional evaluation of mineral elements was carried out by using the index of nutritional quality(INQ) method. Simultaneously, the correlation between 9 minerals and energy was analyzed by SPSS software. RESULTS: Among the 13 fish species, the contents of P and K were highest, with content ranges of 169-255 and 159-373 mg/100 g, respectively, followed by sodium, calcium, magnesium, iron, zinc. The contents of copper and manganese were lowest. The nutritional evaluation showed that the INQ values of P, K and Mg were than 1, the INQ value of P was highest, which was 4.57-8.72. Some fish have INQ values greater than 1 for calcium, iron, copper and zinc. The correlation between the nine minerals was not strong, as a whole. Only some elements have a correlation coefficient greater than 0.6, indicating that there was a synergistic accumulation effect or antagonistic effect in the fish body. CONCLUSION: The dominant mineral elements in different species of fish were different. However, most fish species can be used as high-quality food sources of phosphorus, potassium, magnesium, copper and zinc.
Asunto(s)
Peces , Agua Dulce , Magnesio , Minerales , Fósforo , Animales , China , Minerales/análisis , Magnesio/análisis , Fósforo/análisis , Valor Nutritivo , Cobre/análisis , Calcio/análisis , Zinc/análisis , Potasio/análisis , Hierro/análisis , Sodio/análisis , Manganeso/análisis , Espectrofotometría Atómica/métodosRESUMEN
Laryngeal carcinoma is one of the common types of head and neck cancer, with men being more likely than women to develop it. Diet, age, gender, smoking habits, and environmental factors play important roles in its development. The goal of this study was to ascertain if there were imbalances in essential and toxic trace metals owing to the initiation and progression of laryngeal cancer. Atomic absorption spectrometry was employed to quantify selected macroelements, and essential/toxic trace metals in blood of the cancerous patients and matching controls. Significantly higher concentrations of Pb, Cu, Fe, and Sr while substantially lower levels of Na, K, Ca, and Mg were observed in the cancer patients compared with the controls. Considerably disparate mutual relationships among the macroelements, and essential/toxic trace metals in the patients and controls were manifested by their correlation coefficients. Similarly, multivariate apportionment of the metal levels showed appreciably diverse associations and grouping in the patients and controls. The laryngeal cancer patients exhibited significant disparities in the metal levels among various sub-types (supraglottic, subglottic, transglottic, and glottic cancer) and stages (I, II, III, and IV) of the disease. Most of the metals revealed distinct differences based on the gender, habitat, age, eating preferences, and smoking habits in both donor groups. Overall, the study demonstrated significant imbalances among the macroelements, and essential/toxic trace metal levels in the blood of laryngeal cancer patients compared to the controls.
Asunto(s)
Neoplasias Laríngeas , Oligoelementos , Masculino , Humanos , Femenino , Metales , Dieta , Oligoelementos/análisis , Espectrofotometría AtómicaRESUMEN
Endocrine disrupting chemicals (EDCs) have been extensively explored due to their harmful effects on individual health and the environment by interfering with hormone activity and disrupting the endocrine system. However, their relationship with essential trace elements remains uncertain. This research aimed to investigate the possible correlation between essential trace elements and toxic metals, including cadmium (Cd), and lead (Pb) in children aged 1-5 years with various infectious diseases, including gastrointestinal disorders, typhoid fever, and pneumonia. The study was conducted on biological testing and specimen (scalp hair and whole blood) of diseased and non-diseased children of the same residential area and referent/control age-matched children from developed cities consuming domestically treated water. The media of biological samples were oxidized by an acid mixture before being analyzed by atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through accredited reference material from scalp hair and whole blood sample. The study results revealed that diseased children had lower mean values of essential trace elements (iron, copper, and zinc) in both scalp hair and blood, except for copper, which was found to be higher in blood samples of diseased children. This implies that the deficiency of essential residue and trace elements in children from rural areas who consume groundwater is linked to various infectious diseases. The study highlights the need for more human biomonitoring of EDCs to better comprehend their non-classical toxic properties and their concealed costs on human health. The findings suggest that exposure to EDCs could be associated with unfavorable health outcomes and emphasizes the need for future regulatory policies to minimize exposure and safeguard the health of current and forthcoming generations of children. Furthermore, the study highlights the implication of essential trace elements in maintaining good health and their potential correlation with toxic metals in the environment.
Asunto(s)
Enfermedades Transmisibles , Disruptores Endocrinos , Oligoelementos , Humanos , Niño , Oligoelementos/análisis , Cobre , Zinc , Cadmio , Espectrofotometría AtómicaRESUMEN
Exposure to endocrine-disrupting chemicals (EDCs) can lead to adverse health effects, including immune and endocrine system disruption, respiratory problems, metabolic issues, diabetes, obesity, cardiovascular problems, growth impairment, neurological and learning disabilities, and cancer. Fertilizers, which contain varying levels of heavy metals, are known to pose a significant risk to human health, especially for those residing or working near fertilizer industries. This study aimed to investigate the levels of toxic elements in biological samples of individuals working in a fertilizer industry's quality control and production units and those residing within 100-500 m of the industry. Biological samples, including scalp hair and whole blood, were collected from fertilizer workers, individuals living in the same residential area, and control age-matched persons from nonindustrial areas. The samples were oxidized by an acid mixture before analysis using atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through certified reference materials from scalp hair and whole blood. The results showed that the concentrations of toxic elements, such as cadmium and lead, were higher in biological samples of quality control and production employees. In contrast, lower essential element levels (iron and zinc) were detected in their samples. These levels were higher than those found in samples collected from residents living within 10-500 m of the fertilizer manufacturing facilities and unexposed areas. This study highlights the significance of adopting better practices to reduce exposure to harmful substances and protect the health of fertilizer industry workers and the environment. It also suggests that policymakers and industry leaders should take measures to minimize exposure to EDCs and heavy metals to promote worker safety and public health. These measures could include implementing strict regulations and better occupational health practices to reduce toxic exposure and promote a safer work environment.
Asunto(s)
Disruptores Endocrinos , Metales Pesados , Oligoelementos , Humanos , Fertilizantes/análisis , Disruptores Endocrinos/análisis , Cadmio/análisis , Zinc/análisis , Espectrofotometría Atómica/métodos , Oligoelementos/análisisRESUMEN
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid-phase extraction of 8-hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI-CL) and a 4-diethylamino phenyl hydrazine (DEAPH)-hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbed Cr(III) and Cr(VI) species were eluted from columns using 3.0 ml of 0.1 N of HCl and 3.0 ml of 0.1 N of NaOH, respectively. The flow injection-chemiluminescence (FI-CL) method is based on light emitted due to the oxidation of DEAPH by the H2 O2 in the presence of Cr(III), which catalyzes the reaction. The flow cell is a transparent coiled tube made from glass (2.0 × 4.0, inner and outer diameter) and located close to the photodetector. The flow parameters: flow rate, sample volume, flow cell length, and distance to the CL detector were studied and optimized. Under optimum flow conditions, the Cr(III) concentration can be determined over the range 5-350 µg L-1 with a limit of detection of 1.2 µg L-1 , as the Cr(III) concentration is proportional to the intensity of the CL signal. The relative standard deviations (%) for 10 and 50 µg L-1 Cr(III) were 1.2% and 3.2%, respectively. The effects of Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Co(II), Cu(II), Ni(II), Mn(II), Ca(II), and Fe(III) were investigated. The proposed method is highly selective and sensitive, enabling a rapid determination of the Cr(III) amount in the presence of other interfering metals. Finally, the FI-CL method was examined in five river water samples with excellent recoveries.
Asunto(s)
Compuestos Férricos , Luminiscencia , Concentración de Iones de Hidrógeno , Espectrofotometría Atómica/métodos , Cromo , AguaRESUMEN
For the characterization of Kv 7.2/3 channel activators, several analytical methods are available that vary in effort and cost. In addition to the technically elaborate patch-clamp method, which serves as a reference method, there exist several medium to high-throughput screening methods including a rubidium efflux flame-atomic absorption spectrometry (F-AAS) assay and a commercial thallium uptake fluorescence-based assay. In this study, the general suitability of a graphite furnace atomic absorption spectrometry (GF-AAS)-based rubidium efflux assay as a screening method for Kv 7.2/3 channel activators was demonstrated. With flupirtine serving as a reference compound, 16 newly synthesizedcompounds and the known Kv 7.2/3 activator retigabine were first classified as either active or inactive by using the GF-AAS-based rubidium (Rb) efflux assay. Then, the results were compared with a thallium (Tl) uptake fluorescence-based fluorometric imaging plate reader (FLIPR) potassium assay. Overall, 16 of 17 compounds were classified by the GF-AAS-based assay in agreement with their channel-activating properties determined by the more expensive Tl uptake, fluorescence-based assay. Thus, the performance of the GF-AAS-based Rb assay for primary drug screening of Kv 7.2/3-activating compounds was clearly demonstrated, as documented by the calculated Z'-factor of the GF-AAS-based method. Moreover, method development included optimization of the coating of the microtiter plates and the washing procedure, which extended the range of this assay to poorly adherent cells such as the HEK293 cells used in this study.
Asunto(s)
Grafito , Rubidio , Humanos , Espectrofotometría Atómica/métodos , Talio , Células HEK293 , Relación Estructura-ActividadRESUMEN
The Chinese yam (Dioscorea polystachya, DP) is known for the nutritional value of its tuber. Nevertheless, DP also has promising pharmacological properties. Compared with the tuber, the leaves of DP are still very little studied. However, it may be possible to draw conclusions about the plant quality based on the coloration of the leaves. Magnesium, as a component of chlorophyll, seems to play a role. Therefore, the aim of this research work was to develop an atomic absorption spectrometry-based method for the analysis of magnesium (285.2125 nm) in leaf extracts of DP following the graphite furnace sub-technique. The optimization of the pyrolysis and atomization temperatures resulted in 1500 °C and 1800 °C, respectively. The general presence of flavonoids in the extracts was detected and could explain the high pyrolysis temperature due to the potential complexation of magnesium. The elaborated method had linearity in a range of 1-10 µg L-1 (R2 = 0.9975). The limits of detection and quantification amounted to 0.23 µg L-1 and 2.00 µg L-1, respectively. The characteristic mass was 0.027 pg, and the recovery was 96.7-102.0%. Finally, the method was applied to extracts prepared from differently colored leaves of DP. Similar magnesium contents were obtained for extracts made of dried and fresh leaves. It is often assumed that the yellowing of the leaves is associated with reduced magnesium content. However, the results indicated that yellow leaves are not due to lower magnesium levels. This stimulates the future analysis of DP leaves considering other essential minerals such as molybdenum or manganese.
Asunto(s)
Dioscorea , Magnesio , Espectrofotometría Atómica , Clorofila , FlavonoidesRESUMEN
Elimination of the matrix effect is a major challenge in developing a method for the quantification of heavy metals (HMs) in water samples. In this regard, the current research describes the simultaneous analyses of Cu(II), Cd(II), and Ni(II) ions in water matrices through flame atomic absorption spectrophotometry (FAAS) after preconcentration with carrier element-free co-precipitation (CEFC) technique by the help of an organic co-precipitant, 3-{[5-(4-Chlorobenzyl)-3-(4-chlorophenyl)-1H-1,2,4-triazol-1-yl]-methyl}-4-[2,4-(dichlorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (CCMBATT). Based on our literature research, CCMBATT was employed for the first time in this study as an organic co-precipitant for the preconcentration of HMs. Factors such as solution pH, concentration of co-precipitant, sample volume, standing time, centrifugation rate, and time were thoroughly examined and optimized to achieve the highest efficiency in terms of HM recovery. The limits of detection (LODs) (with 10 number of tests) of 0.54, 0.34, and 1.95 µg L-1 and the relative standard deviations (RSD %) of 2.1, 3.3, and 3.0 were determined for Cu(II), Cd(II) and Ni(II) ions, respectively. Recovery results of HMs for the spiked samples were in the range of 92.8-101.0%, demonstrating the trueness of the method and its applicability to the water samples matrix.
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , Ríos , Metales Pesados/análisis , Agua/análisis , Límite de Detección , Espectrofotometría Atómica/métodos , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , IonesRESUMEN
In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.