Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.128
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 621(7978): 324-329, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648851

RESUMEN

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Asunto(s)
Biomasa , Calor Extremo , Peces , Animales , Europa (Continente) , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calor Extremo/efectos adversos , América del Norte , Biodiversidad
2.
Nature ; 605(7910): 490-496, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477762

RESUMEN

As the human population and demand for food grow1, the ocean will be called on to provide increasing amounts of seafood. Although fisheries reforms and advances in offshore aquaculture (hereafter 'mariculture') could increase production2, the true future of seafood depends on human responses to climate change3. Here we investigated whether coordinated reforms in fisheries and mariculture could increase seafood production per capita under climate change. We find that climate-adaptive fisheries reforms will be necessary but insufficient to maintain global seafood production per capita, even with aggressive reductions in greenhouse-gas emissions. However, the potential for sustainable mariculture to increase seafood per capita is vast and could increase seafood production per capita under all but the most severe emissions scenario. These increases are contingent on fisheries reforms, continued advances in feed technology and the establishment of effective mariculture governance and best practices. Furthermore, dramatically curbing emissions is essential for reducing inequities, increasing reform efficacy and mitigating risks unaccounted for in our analysis. Although climate change will challenge the ocean's ability to meet growing food demands, the ocean could produce more food than it does currently through swift and ambitious action to reduce emissions, reform capture fisheries and expand sustainable mariculture operations.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Acuicultura , Humanos , Océanos y Mares , Alimentos Marinos
3.
Nature ; 609(7927): 535-540, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071164

RESUMEN

Ocean eddies are coherent, rotating features that can modulate pelagic ecosystems across many trophic levels. These mesoscale features, which are ubiquitous at mid-latitudes1, may increase productivity of nutrient-poor regions2,3, accumulate prey4 and modulate habitat conditions in the water column5. However, in nutrient-poor subtropical gyres-the largest marine biome-the role of eddies in modulating behaviour throughout the pelagic predator community remains unknown despite predictions for these gyres to expand6 and pelagic predators to become increasingly important for food security7. Using a large-scale fishery dataset in the North Pacific Subtropical Gyre, we show a pervasive pattern of increased pelagic predator catch inside anticyclonic eddies relative to cyclones and non-eddy areas. Our results indicate that increased mesopelagic prey abundance in anticyclone cores4,8 may be attracting diverse predators, forming ecological hotspots where these predators aggregate and exhibit increased abundance. In this energetically quiescent gyre, we expect that isolated mesoscale features (and the habitat conditions in them) exhibit primacy over peripheral submesoscale dynamics in structuring the foraging opportunities of pelagic predators. Our finding that eddies influence coupling of epi- to mesopelagic communities corroborates the growing evidence that deep scattering layer organisms are vital prey for a suite of commercially important predator species9 and, thus, provide valuable ecosystem services.


Asunto(s)
Ecosistema , Conducta Predatoria , Movimientos del Agua , Agua , Animales , Tormentas Ciclónicas , Conjuntos de Datos como Asunto , Explotaciones Pesqueras , Cadena Alimentaria , Nutrientes/análisis , Océano Pacífico , Clima Tropical
4.
Nature ; 592(7854): 397-402, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731930

RESUMEN

The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.


Asunto(s)
Biodiversidad , Clima , Conservación de los Recursos Naturales , Abastecimiento de Alimentos , Calentamiento Global/prevención & control , Animales , Secuestro de Carbono , Explotaciones Pesqueras , Sedimentos Geológicos/química , Actividades Humanas , Cooperación Internacional
5.
Nature ; 591(7851): 551-563, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762770

RESUMEN

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.


Asunto(s)
Acuicultura/historia , Abastecimiento de Alimentos/historia , Desarrollo Sostenible/historia , Alimentación Animal , Animales , Animales Salvajes , Explotaciones Pesqueras , Peces , Agua Dulce , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Internacionalidad , Océanos y Mares , Mariscos
6.
Nature ; 597(7876): 360-365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526707

RESUMEN

Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.


Asunto(s)
Acuicultura , Ecosistema , Monitoreo del Ambiente , Alimentos Marinos , Desarrollo Sostenible , Animales , Acuicultura/tendencias , Cambio Climático , Dieta , Ecología , Política Ambiental , Explotaciones Pesqueras , Abastecimiento de Alimentos/métodos , Gases de Efecto Invernadero , Humanos , Moluscos , Nitrógeno , Fósforo , Alimentos Marinos/provisión & distribución , Algas Marinas , Desarrollo Sostenible/tendencias
7.
Proc Natl Acad Sci U S A ; 121(10): e2313205121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408235

RESUMEN

Marine protected areas (MPAs) are widely used for ocean conservation, yet the relative impacts of various types of MPAs are poorly understood. We estimated impacts on fish biomass from no-take and multiple-use (fished) MPAs, employing a rigorous matched counterfactual design with a global dataset of >14,000 surveys in and around 216 MPAs. Both no-take and multiple-use MPAs generated positive conservation outcomes relative to no protection (58.2% and 12.6% fish biomass increases, respectively), with smaller estimated differences between the two MPA types when controlling for additional confounding factors (8.3% increase). Relative performance depended on context and management: no-take MPAs performed better in areas of high human pressure but similar to multiple-use in remote locations. Multiple-use MPA performance was low in high-pressure areas but improved significantly with better management, producing similar outcomes to no-take MPAs when adequately staffed and appropriate use regulations were applied. For priority conservation areas where no-take restrictions are not possible or ethical, our findings show that a portfolio of well-designed and well-managed multiple-use MPAs represents a viable and potentially equitable pathway to advance local and global conservation.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Humanos , Biomasa , Peces , Ecosistema
8.
Proc Natl Acad Sci U S A ; 121(29): e2400592121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980905

RESUMEN

The expansion of marine protected areas (MPAs) is a core focus of global conservation efforts, with the "30x30" initiative to protect 30% of the ocean by 2030 serving as a prominent example of this trend. We consider a series of proposed MPA network expansions of various sizes, and we forecast the impact this increase in protection would have on global patterns of fishing effort. We do so by building a predictive machine learning model trained on a global dataset of satellite-based fishing vessel monitoring data, current MPA locations, and spatiotemporal environmental, geographic, political, and economic features. We then use this model to predict future fishing effort under various MPA expansion scenarios compared to a business-as-usual counterfactual scenario that includes no new MPAs. The difference between these scenarios represents the predicted change in fishing effort associated with MPA expansion. We find that regardless of the MPA network objectives or size, fishing effort would decrease inside the MPAs, though by much less than 100%. Moreover, we find that the reduction in fishing effort inside MPAs does not simply redistribute outside-rather, fishing effort outside MPAs would also decline. The overall magnitude of the predicted decrease in global fishing effort principally depends on where networks are placed in relation to existing fishing effort. MPA expansion will lead to a global redistribution of fishing effort that should be accounted for in network design, implementation, and impact evaluation.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Océanos y Mares , Ecosistema , Aprendizaje Automático , Peces
9.
Proc Natl Acad Sci U S A ; 121(7): e2305424121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315858

RESUMEN

Ensuring healthy and sustainable food systems in increasing social, economic, and ecological change is a key global priority to protect human and environmental health. Seafood is an essential component of these food systems and a critical source of nutrients, especially in coastal communities. However, despite rapid transformations in aquatic food systems, and our urgent need to understand them, there is a dearth of data connecting harvested food production to actualized food consumption. Many analyses suggest institutional, legal, or technological innovations to improve food systems, but few have analyzed the pathways through which people already gain access to nutritious food. Here, using a random forest model and cluster analysis of a nationally representative data set from Kiribati, we operationalize access theory to trace the flows of consumptive benefit in a fisheries-based food system. We demonstrate that the market access mechanism is the key mechanism mediating seafood access in Kiribati, but importantly, the highest seafood consumption households showed lower market access, pointing to the importance of non-market acquisition (e.g., home production and gifting). We reveal six distinct household strategies that employ different sets of access mechanisms to ensure high levels of local seafood consumption in different contexts. We demonstrate the impacts of these strategies on the composition of household seafoods consumed, stressing the need to support these existing successful strategies. Finally, we point to key policy and management insights (e.g., improved infrastructure, shifts in species management) that may be more effective in reinforcing these existing pathways than commonly proposed food system interventions.


Asunto(s)
Explotaciones Pesqueras , Alimentos Marinos , Humanos , Alimentos Marinos/análisis , Etnicidad , Abastecimiento de Alimentos , Estado de Salud
10.
Proc Natl Acad Sci U S A ; 121(1): e2313773120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147648

RESUMEN

Climate change is a new disrupter to global fisheries systems and their governance frameworks. It poses a pressing management challenge, particularly in China, which is renowned as the world's largest fishing country and seafood producer. As climate change continues to intensify in the region and climate awareness grows within the country's national policy, the need to understand China's fisheries' resilience to the escalating climate crisis becomes paramount. In this study, we conduct an interdisciplinary analysis to assess the vulnerability and risk of China's marine capture fisheries in response to climate change. This study employs a spatially explicit, indicator-based approach with a coupled social-ecological framework, focusing on 67 species and 11 coastal regions. By integrating diverse sets of climatic, ecological, economic, societal, and governance indicators and information, we elucidate the factors that could hinder climate adaptation, including a limited understanding of fish early life stages, uncertainty in seafood production, unequal allocation and accessibility of resources, and inadequate consideration of inclusive governance and adaptive management. Our results show that species, which have managed to survive the stress of overfishing, demonstrate a remarkable ability to adapt to climate change. However, collapsing stocks such as large yellow croaker face a high risk due to the synergistic effects of inherent biological traits and external management interventions. We emphasize the imperative to build institutional, scientific, and social capacity to support fisheries adaptation. The scientific insights provided by this study can inform fisheries management decisions and promote the operationalization of climate-resilient fisheries in China and other regions.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Cambio Climático , Medio Social , China , Ecosistema , Peces
11.
Nature ; 583(7818): 801-806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699418

RESUMEN

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/estadística & datos numéricos , Tiburones/fisiología , Animales , Mapeo Geográfico , Densidad de Población , Factores Socioeconómicos
12.
Nature ; 588(7839): 631-635, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239780

RESUMEN

Intensive fisheries have reduced fish biodiversity and abundance in aquatic ecosystems worldwide1-3. 'No-take' marine reserves have become a cornerstone of marine ecosystem-based fisheries management4-6, and their benefits for adjacent fisheries are maximized when reserve design fosters synergies among nearby reserves7,8. The applicability of this marine reserve network paradigm to riverine biodiversity and inland fisheries remains largely untested. Here we show that reserves created by 23 separate communities in Thailand's Salween basin have markedly increased fish richness, density, and biomass relative to adjacent areas. Moreover, key correlates of the success of protected areas in marine ecosystems-particularly reserve size and enforcement-predict differences in ecological benefits among riverine reserves. Occupying a central position in the network confers additional gains, underscoring the importance of connectivity within dendritic river systems. The emergence of network-based benefits is remarkable given that these reserves are young (less than 25 years old) and arose without formal coordination. Freshwater ecosystems are under-represented among the world's protected areas9, and our findings suggest that networks of small, community-based reserves offer a generalizable model for protecting biodiversity and augmenting fisheries as the world's rivers face unprecedented pressures10,11.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/organización & administración , Peces/clasificación , Peces/fisiología , Ríos , Clima Tropical , Animales , Biomasa , Mapeo Geográfico , Tailandia
13.
Nature ; 588(7836): 95-100, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32814903

RESUMEN

Global food demand is rising, and serious questions remain about whether supply can increase sustainably1. Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2-6. As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050. Here we examine the main food-producing sectors in the ocean-wild fisheries, finfish mariculture and bivalve mariculture-to estimate 'sustainable supply curves' that account for ecological, economic, regulatory and technological constraints. We overlay these supply curves with demand scenarios to estimate future seafood production. We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21-44 million tonnes by 2050, a 36-74% increase compared to current yields. This represents 12-25% of the estimated increase in all meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, but are most pronounced for mariculture. Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand.


Asunto(s)
Explotaciones Pesqueras/provisión & distribución , Abastecimiento de Alimentos/estadística & datos numéricos , Océanos y Mares , Alimentos Marinos/provisión & distribución , Desarrollo Sostenible/tendencias , Animales , Organismos Acuáticos/crecimiento & desarrollo , Explotaciones Pesqueras/economía , Peces/crecimiento & desarrollo , Abastecimiento de Alimentos/economía , Humanos , Moluscos/crecimiento & desarrollo , Alimentos Marinos/economía , Desarrollo Sostenible/economía , Factores de Tiempo
14.
Nature ; 588(7836): 48-56, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177707

RESUMEN

The threat of criminal activity in the fisheries sector has concerned the international community for a number of years. In more recent times, the presence of organized crime in fisheries has come to the fore. In 2008, the United Nations General Assembly asked all states to contribute to increasing our understanding the connection between illegal fishing and transnational organized crime at sea. Policy-makers, researchers and members of civil society are increasing their knowledge of the dynamics and destructiveness of the blue shadow economy and the role of organized crime within this economy. Anecdotal, scientific and example-based evidence of the various manifestations of organized crime in fisheries, its widespread adverse impacts on economies, societies and the environment globally and its potential security consequences is now publicly available. Here we present the current state of knowledge on organized crime in the fisheries sector. We show how the many facets of organized crime in this sector, including fraud, drug trafficking and forced labour, hinder progress towards the development of a sustainable ocean economy. With reference to worldwide promising practices, we highlight practical opportunities for action to address the problem. We emphasize the need for a shared understanding of the challenge and for the implementation of intelligence-led, skills-based cooperative law enforcement action at a global level and a community-based approach for targeting organized crime in the supply chain of organized criminal networks at a local level, facilitated by legislative frameworks and increased transparency.


Asunto(s)
Crimen/economía , Política Ambiental/economía , Política Ambiental/legislación & jurisprudencia , Explotaciones Pesqueras/economía , Océanos y Mares , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia , Animales , Tráfico de Drogas/economía , Fraude/economía , Trata de Personas/economía , Humanos , Internacionalidad , Impuestos/economía
15.
Proc Natl Acad Sci U S A ; 120(26): e2300688120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339217

RESUMEN

Subsidies are widely criticized in fisheries management for promoting global fishing capacity growth and overharvesting. Scientists worldwide have thus called for a ban on "harmful" subsidies that artificially increase fishing profits, resulting in the recent agreement among members of the World Trade Organization to eliminate such subsidies. The argument for banning harmful subsidies relies on the assumption that fishing will be unprofitable after eliminating subsidies, incentivizing some fishermen to exit and others to refrain from entering. These arguments follow from open-access governance regimes where entry has driven profits to zero. Yet many modern-day fisheries are conducted under limited-access regimes that limit capacity and maintain economic profits, even without subsidies. In these settings, subsidy removal will reduce profits but perhaps without any discernable effect on capacity. Importantly, until now, there have been no empirical studies of subsidy reductions to inform us about their likely quantitative impacts. In this paper, we evaluate a policy reform that reduced fisheries subsidies in China. We find that China's subsidy reductions accelerated the rate at which fishermen retired their vessels, resulting in reduced fleet capacity, particularly among older and smaller vessels. Notably, the reduction of harmful subsidies was only partly responsible for reducing fleet capacity; an increase in vessel retirement subsidies was also a necessary driver of capacity reduction. Our study demonstrates that the efficacy of removing harmful subsidies depends on the policy environment in which removals occur.


Asunto(s)
Explotaciones Pesqueras , Políticas , China , Conservación de los Recursos Naturales
16.
Proc Natl Acad Sci U S A ; 120(7): e2218044120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749724

RESUMEN

The massive release of captive-bred native species ("intentional release") is a pervasive method to enhance wild populations of commercial and recreational species. However, such external inputs may disrupt the sensitive species interactions that allow competing species to coexist, potentially compromising long-term community stability. Here, we use theory and long-term data of stream fish communities to show that intentional release destabilizes community dynamics with limited demographic benefit to the enhanced species. Our theory predicted that intentional release intensifies interspecific competition, facilitating the competitive exclusion of unenhanced species that otherwise stably coexist. In parallel, the excessive input of captive-bred individuals suppressed the natural recruitment of the enhanced species via intensified within-species competition. Consequently, the ecological community with the intentional release is predicted to show reduced community density with unstable temporal dynamics. Consistent with this prediction, stream fish communities showed greater temporal fluctuations and fewer taxonomic richness in rivers with the intensive release of hatchery salmon-a major fishery resource worldwide. Our findings alarm that the current overreliance on intentional release may accelerate global biodiversity loss with undesired consequences for the provisioning of ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Explotaciones Pesqueras , Salmón , Ríos
17.
Proc Natl Acad Sci U S A ; 120(5): e2216891120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689654

RESUMEN

Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks. We took advantage of the spatial and temporal gradients in fishing exposure and fisheries management in the Western Atlantic to analyze the effect on the Red List status of all 26 wide-ranging coastal sharks and rays. We show that extinction risk was greater where fishing pressure was higher, but this was offset by the strength of management engagement (indicated by strength of National and Regional Plan of Action for sharks and rays). The regional Red List Index (which tracks changes in extinction risk through time) declined in all regions until the 1980s but then improved in the North and Central Atlantic such that the average extinction risk is currently half that in the Southwest. Many sharks and rays are wide ranging, and successful fisheries management in one country can be undone by poorly regulated or unregulated fishing elsewhere. Our study underscores that well-enforced, science-based management of carefully monitored fisheries can achieve conservation success, even for slow-growing species.


Asunto(s)
Tiburones , Animales , Conservación de los Recursos Naturales , Teorema de Bayes , Explotaciones Pesqueras , Ecosistema
18.
Proc Natl Acad Sci U S A ; 120(47): e2307529120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956293

RESUMEN

Marine reserves are considered essential for sustainable fisheries, although their effectiveness compared to traditional fisheries management is debated. The effect of marine reserves is mostly studied on short ecological time scales, whereas fisheries-induced evolution is a well-established consequence of harvesting. Using a size-structured population model for an exploited fish population of which individuals spend their early life stages in a nursery habitat, we show that marine reserves will shift the mode of population regulation from low size-selective survival late in life to low, early-life survival due to strong resource competition. This shift promotes the occurrence of rapid ecological cycles driven by density-dependent recruitment as well as much slower evolutionary cycles driven by selection for the optimal body to leave the nursery grounds, especially with larger marine reserves. The evolutionary changes increase harvesting yields in terms of total biomass but cause disproportionately large decreases in yields of larger, adult fish. Our findings highlight the importance of carefully considering the size of marine reserves and the individual life history of fish when managing eco-evolutionary marine systems to ensure both population persistence as well as stable fisheries yields.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Peces , Biomasa , Explotaciones Pesqueras , Dinámica Poblacional
19.
Proc Natl Acad Sci U S A ; 120(6): e2207739120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716378

RESUMEN

Interactions between humans and nature have profound consequences, which rarely are mutually beneficial. Further, behavioral and environmental changes can turn human-wildlife cooperative interactions into conflicts, threatening their continued existence. By tracking fine-scale behavioral interactions between artisanal fishers and wild dolphins targeting migratory mullets, we reveal that foraging synchrony is key to benefiting both predators. Dolphins herd mullet schools toward the coast, increasing prey availability within the reach of the net-casting fishers, who gain higher foraging success-but only when matching the casting behavior with the dolphins' foraging cues. In turn, when dolphins approach the fishers' nets closely and cue fishers in, they dive for longer and modify their active foraging echolocation to match the time it takes for nets to sink and close over mullets-but only when fishers respond to their foraging cues appropriately. Using long-term demographic surveys, we show that cooperative foraging generates socioeconomic benefits for net-casting fishers and ca. 13% survival benefits for cooperative dolphins by minimizing spatial overlap with bycatch-prone fisheries. However, recent declines in mullet availability are threatening these short- and long-term benefits by reducing the foraging success of net-casting fishers and increasing the exposure of dolphins to bycatch in the alternative fisheries. Using a numerical model parametrized with our empirical data, we predict that environmental and behavioral changes are pushing this traditional human-dolphin cooperation toward extinction. We propose two possible conservation actions targeting fishers' behavior that could prevent the erosion of this century-old fishery, thereby safeguarding one of the last remaining cases of human-wildlife cooperation.


Asunto(s)
Delfines , Smegmamorpha , Animales , Humanos , Conservación de los Recursos Naturales , Simbiosis , Animales Salvajes , Explotaciones Pesqueras
20.
Trends Genet ; 38(7): 629-631, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35487824

RESUMEN

Structural variation can create supergene architectures through tight genomic linkages that maintain traits in favourable combinations. A new study by Sodeland et al. links such supergenes in Atlantic cod with species persistence over millennia, despite the fisheries-induced decline in populations. This links intraspecific supergene diversity to ecological stasis, with significant consequences for ecosystem stability.


Asunto(s)
Ecosistema , Gadus morhua , Animales , Explotaciones Pesqueras , Gadus morhua/genética , Ligamiento Genético , Genoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA