RESUMEN
TRAF1 is a signaling adaptor known for its role in tumor necrosis factor receptor-induced cell survival. Here we show that monocytes from healthy human subjects with a rheumatoid arthritis-associated single-nucleotide polymorphism (SNP) in the TRAF1 gene express less TRAF1 protein but greater amounts of inflammatory cytokines in response to lipopolysaccharide (LPS). The TRAF1 MATH domain binds directly to three components of the linear ubiquitination (LUBAC) complex, SHARPIN, HOIP and HOIL-1, to interfere with the recruitment and linear ubiquitination of NEMO. This results in decreased NF-κB activation and cytokine production, independently of tumor necrosis factor. Consistent with this, Traf1-/- mice show increased susceptibility to LPS-induced septic shock. These findings reveal an unexpected role for TRAF1 in negatively regulating Toll-like receptor signaling, providing a mechanistic explanation for the increased inflammation seen with a disease-associated TRAF1 SNP.
Asunto(s)
Artritis Reumatoide/genética , Leucocitos Mononucleares/inmunología , Monocitos/inmunología , Transducción de Señal , Factor 1 Asociado a Receptor de TNF/metabolismo , Animales , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Factor 1 Asociado a Receptor de TNF/genética , Receptores Toll-Like/metabolismoRESUMEN
Secretion of IL-1ß, a potent cytokine that plays a key role in gout pathogenesis, is regulated by inflammasomes. TRAF1 has been linked to heightened risk to inflammatory arthritis. In this article, we show that TRAF1 negatively regulates inflammasome activation to limit caspase-1 and IL-1ß secretion in human and mouse macrophages. TRAF1 reduces linear ubiquitination and subsequent oligomerization of the adapter protein, ASC. i.p. injection of monosodium urate crystals resulted in increased inflammatory cell infiltrates and IL-1ß production in Traf1 knockout mice compared with wild type littermates. In a model of monosodium urate crystal-induced gout, Traf1 knockout mice exhibited more swelling in the knee joints, increased infiltration of inflammatory cells, and higher expression of proinflammatory cytokines. In summary, this study identifies TRAF1 as a key regulator of IL-1ß production and a potential therapeutic target for inflammasome-driven diseases such as gout.
Asunto(s)
Gota , Inflamasomas , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales , Citocinas , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Factor 1 Asociado a Receptor de TNF/genética , Ácido ÚricoRESUMEN
The imbalance of vascular endothelial cell homeostasis is the key mechanism for the progression of many vascular diseases. RNA modification, particularly N6-Methyladenosine (m6A), plays important function in numerous biological processes. Nevertheless, the regulatory function of m6A RNA methylation in endothelial dysfunction remains insufficiently characterized. In this study, we established that the m6A methyltransferase METTL3 is critical for regulating endothelial function. Functionally, depletion of METTL3 results in decreased endothelial cells proliferation, survival and inflammatory response. Conversely, overexpression of METTL3 elicited the opposite effects. Mechanistically, MeRIP-seq identified that METTL3 catalyzed m6A modification of TRAF1 mRNA and enhanced TRAF1 translation, thereby up-regulation of TRAF1 protein. Over-expression of TRAF1 successfully rescued the inhibition of proliferation and adhesion of endothelial cells due to METTL3 knockdown. Additionally, m6A methylation-mediated TRAF1 expression can be reversed by the demethylase ALKBH5. Knockdown of ALKBH5 upregulated the level of m6A and protein level of TRAF1, and also increased endothelial cells adhesion and inflammatory response. Collectively, our findings suggest that METTL3 regulates vascular endothelium homeostasis through TRAF1 m6A modification, suggesting that targeting the METTL3-m6A-TRAF1 axis may hold therapeutic potential for patients with vascular diseases.
Asunto(s)
Adenosina , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Inflamación , Metiltransferasas , Factor 1 Asociado a Receptor de TNF , Metiltransferasas/metabolismo , Metiltransferasas/genética , Humanos , Metilación , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor 1 Asociado a Receptor de TNF/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Metilación de ARNRESUMEN
OBJECTIVE: To investigate the association between loci rs3761847 and rs10818488 of tumor necrosis factor receptor-associated factor 1/complement C5 (TRAF1/C5) gene and the susceptibility to IgAV. METHODS: 100 blood samples of children with IgAV and 100 blood samples of healthy children were collected from the Third Xiangya Hospital of Central South University from June 2017 to June 2019. The target gene fragment was amplified by polymerase chain reaction (PCR), and the single nucleic acid gene polymorphism of the gene loci was detected by PCR sequencing based typing technique. The association between gene polymorphism of each locus and susceptibility to IgAV was analyzed. RESULTS: There were significant differences in both genotype (P < .05) and allele frequencies ï¼P < .05) of rs3761847 of TRAF1/C5 gene between the IgAV group and the control group.Besides, the risks of developing IgAV in children with the TT genotype was 0.495 times and in children with the C allele was 1.627 times of that in children with other genotypes and alleles, respectively (P < .05). For IgAV patients, renal involvement risk in children with CC genotype was 5.859 times of that in children with other genotypes (P < .05). There were no significant differences in genotype (P > .05) and allele frequencies (P > .05) of rs10818488 of TRAF1/C5 gene between the IgAV group and the control group. IgAV patients with TT genotype had a 3.2 times higher risk of renal involvement than those with other genotypes (P < .05). CONCLUSIONS: There is an association between locus rs3761847 of TRAF1/C5 gene single nucleotide polymorphisms and susceptibility to IgAV. The T allele at locus rs3761847 of TRAF1/C5 gene may be a protective factor for IgAV. The C allele at locus rs3761847 and the T allele at locus rs10818488 of TRAF1/C5 gene may be associated with kidney injury in IgAV.
Asunto(s)
Vasculitis por IgA , Niño , Humanos , Factor 1 Asociado a Receptor de TNF/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Complemento C5/genética , China , Estudios de Casos y ControlesRESUMEN
BACKGROUND: RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants. METHODS: We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and circulating protein levels with RA using two-sample Mendelian randomization analysis methods. RESULTS: A total of 160 RNAm-SNPs related to m6A, m1A, A-to-I, m7G, m5C, m5U and m6Am modifications were identified to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA. CONCLUSION: The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins.
Asunto(s)
Artritis Reumatoide , Polimorfismo de Nucleótido Simple , Humanos , Cadenas HLA-DRB1/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factor 1 Asociado a Receptor de TNF/genética , Artritis Reumatoide/genética , Antígenos HLA-A/genética , ARN , Proteínas Portadoras/genética , Proteínas Represoras/genética , Péptidos y Proteínas de Señalización Intracelular/genéticaRESUMEN
Single nucleotide polymorphisms in non-HLA genes are involved in the development of rheumatoid arthritis (RA). SNPS in genes: PADI4 (rs2240340), STAT4 (rs7574865), CD40 (rs4810485), PTPN22 (rs2476601), and TRAF1 (rs3761847) have been described as risk factors for the development of autoimmune diseases, including RA. This study aimed to assess the prevalence of polymorphisms of these genes in the Polish population of patients with rheumatoid arthritis as compared to healthy controls. 324 subjects were included in the study: 153 healthy subjects and 181 patients from the Department of Rheumatology, Medical University of Lodz who fulfilled the criteria of rheumatoid arthritis diagnosis. Genotypes were determined by Taqman SNP Genotyping Assay. rs2476601 (G/A, OR = 2.16, CI = 1.27-3.66; A/A, OR = 10.35, CI = 1.27-84.21), rs2240340 (C/T, OR = 4.35, CI = 2.55-7.42; T/T, OR = 2.80, CI = 1.43-4.10) and rs7574865 (G/T, OR = 1.97, CI = 1.21-3.21; T/T, OR = 3.33, CI = 1.01-11.02) were associated with RA in the Polish population. Rs4810485 was also associated with RA, however after Bonferroni's correction was statistically insignificant. We also found an association between minor alleles of rs2476601, rs2240340, and rs7574865 and RA (OR = 2.32, CI = 1.47-3.66; OR = 2.335, CI = 1.64-3.31; OR = 1.88, CI = 1.27-2.79, respectively). Multilocus analysis revealed an association between CGGGT and rare (below 0.02 frequency) haplotypes (OR = 12.28, CI = 2.65-56.91; OR = 3.23, CI = 1.63-6.39). In the Polish population, polymorphisms of the PADI4, PTPN22, and STAT4 genes have been detected, which are also known risk factors for RA in various other populations.
Asunto(s)
Artritis Reumatoide , Polimorfismo de Nucleótido Simple , Humanos , Factor 1 Asociado a Receptor de TNF/genética , Polonia/epidemiología , Predisposición Genética a la Enfermedad , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Genotipo , Alelos , Estudios de Casos y Controles , Frecuencia de los Genes , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Factor de Transcripción STAT4/genéticaRESUMEN
The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413-2025 bp in length and encoded 470-674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon-intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish.
Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Edwardsiella ictaluri/metabolismo , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/veterinaria , Bagres/genética , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismo , Filogenia , Factor 3 Asociado a Receptor de TNF/genética , Proteínas de Peces/metabolismo , Mamíferos/metabolismoRESUMEN
BACKGROUND: Sunitinib resistance can be classified into primary and secondary resistance. While accumulating research has indicated several underlying factors contributing to sunitinib resistance, the precise mechanisms in renal cell carcinoma are still unclear. METHODS: RNA sequencing and m6A sequencing were used to screen for functional genes involved in sunitinib resistance. In vitro and in vivo experiments were carried out and patient samples and clinical information were obtained for clinical analysis. RESULTS: We identified a tumor necrosis factor receptor-associated factor, TRAF1, that was significantly increased in sunitinib-resistant cells, resistant cell-derived xenograft (CDX-R) models and clinical patients with sunitinib resistance. Silencing TRAF1 increased sunitinib-induced apoptotic and antiangiogenic effects. Mechanistically, the upregulated level of TRAF1 in sunitinib-resistant cells was derived from increased TRAF1 RNA stability, which was caused by an increased level of N6-methyladenosine (m6A) in a METTL14-dependent manner. Moreover, in vivo adeno-associated virus 9 (AAV9) -mediated transduction of TRAF1 suppressed the sunitinib-induced apoptotic and antiangiogenic effects in the CDX models, whereas knockdown of TRAF1 effectively resensitized the sunitinib-resistant CDXs to sunitinib treatment. CONCLUSIONS: Overexpression of TRAF1 promotes sunitinib resistance by modulating apoptotic and angiogenic pathways in a METTL14-dependent manner. Targeting TRAF1 and its pathways may be a novel pharmaceutical intervention for sunitinib-treated patients.
Asunto(s)
Adenosina , Carcinoma de Células Renales , Neoplasias Renales , Metiltransferasas , Sunitinib , Factor 1 Asociado a Receptor de TNF , Adenosina/análogos & derivados , Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/irrigación sanguínea , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Metiltransferasas/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Sunitinib/farmacología , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismoRESUMEN
BACKGROUND: Neonatal pneumonia is a common illness in the neonatal period with a high fatality rate. Accumulating proofs have attested to the crucial role of circular RNAs (circRNAs) in pneumonia. This study was intended to expound on the function of circ_0038467 and the underlying mechanism in lipopolysaccharide (LPS)-stimulated 16HBE cell injury in neonatal pneumonia. METHODS: 16HBE cells were exposed to LPS to establish an in vitro neonatal pneumonia cell model. Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented for detecting the levels of circ_0038467, microRNA-545-3p (miR-545-3p), and tumor necrosis factor receptor-associated factor 1 (TRAF1) in neonatal pneumonia serums and LPS-treated 16HBE cells. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and flow cytometry assays were used to examine cell viability, proliferation, and apoptosis, respectively. The protein abundances of proliferation/apoptosis/inflammation-correlated makers and TRAF1 were tested by Western blot. RNase R and Actinomycin D assays were implemented to determine the features of circ_0038467. The mutual effect between miR-545-3p and circ_0038467 or TRAF1 was affirmed by a dual-luciferase reporter and RNA pull-down assay assays. RESULTS: Circ_0038467 was upregulated in neonatal pneumonia serum specimens and LPS-triggered 16HBE cells. LPS administration restrained 16HBE cell proliferation and promoted apoptosis and inflammation, whereas circ_0038467 silence recovered these influences. Meanwhile, miR-545-3p was targeted by circ_0038467, and circ_0038467 could modulate LPS-treated 16HBE cell injury through absorbing miR-545-3p. Furthermore, circ_0038467 controlled TRAF1 level via segregating miR-545-3p. Moreover, TRAF1 overexpression relieved the suppressive impact of circ_0038467 silence in LPS-triggered 16HBE cell detriment. CONCLUSION: Circ_0038467 knockdown mitigated LPS-exposed 16HBE cell damage through regulating miR-545-3p/PPARA axis.
Asunto(s)
MicroARNs , Neumonía , ARN Circular , Factor 1 Asociado a Receptor de TNF , Humanos , Recién Nacido , Apoptosis , Proliferación Celular , Inflamación , Lipopolisacáridos , MicroARNs/genética , Factor 1 Asociado a Receptor de TNF/genética , ARN Circular/genéticaRESUMEN
INTRODUCTION: A genome-wide association analysis revealed a rheumatoid arthritis (RA)-risk-associated genetic locus on chromosome 9, which contained the tumor necrosis factor receptor-associated factor 1 (TRAF1). However, the detail mechanism by TRAF1 signaled to fibroblast-like synoviocytes (FLSs) apoptosis remains to be fully understood. MATERIALS AND METHODS: Synovial tissue of 10 RA patients and osteoarthritis patients were obtained during joint replacement surgery. We investigated TRAF1 level and FLSs apoptosis percentage in vivo and elucidated the mechanism involved in the regulation of apoptotic process in vitro. RESULTS: We proved the significant increase of TRAF1 level in FLSs of RA patients and demonstrated that TRAF1 level correlated positively with DAS28 score and negatively with FLSs apoptosis. Treatment with siTRAF1 was able to decrease MMPs levels and the phosphorylated forms of JNK/NF-κB in vitro. Moreover, JNK inhibitor could attenuate expression of MMPs and increase percentage of apoptosis in RA-FLSs, while siTRAF1 could not promote apoptosis when RA-FLSs were pretreated with JNK activator. CONCLUSIONS: High levels of TRAF1 in RA synovium play an important role in the synovial hyperplasia of RA by suppressing apoptosis through activating JNK/NF-kB-dependent signaling pathways in response to the engagement of CD40.
Asunto(s)
Artritis Reumatoide , Antígenos CD40/metabolismo , Sinoviocitos , Apoptosis , Artritis Reumatoide/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , MAP Quinasa Quinasa 4/metabolismo , FN-kappa B/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismoRESUMEN
OBJECTIVES: This study aimed to explore the underlying role and mechanism of LINC00313 in osteoarthritis (OA) progression. METHODS: CHON-001 chondrocytes were treated with interleukin (IL)-1ß to induce OA in vitro, and then transfected with LINC00313 overexpression plasmids (pcDNA-LINC00313) or small interfering RNA against tumor necrosis factor (TNF) receptor-associated factor 1 (si-TRAF1). Cell viability, apoptosis, levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-6 and IL-8, and expression of extracellular matrix (ECM) degradation related proteins in CHON-001 cells were determined. TRAF1 promoter methylation were was detected with methylation-specific polymerase chain reaction (MSP) assay. Furthermore, a c-Jun N-terminal kinase (JNK) signaling activator was used to confirm whether the apoptosis signal-regulating kinase 1 (ASK1)/JNK signaling pathway was involved in the function of LINC00313/TRAF1 axis in chondrocytes. In addition, an OA mouse model was established and lentivirus LINC00313 overexpression vector (Lv-LINC00313) was injected, and then inflammatory cytokine levels, ECM protein expression, and pathological changes in cartilage tissues were detected. RESULTS: LINC00313 was downregulated and TRAF1 was upregulated in OA cartilage tissues. LINC00313 overexpression or TRAF1 silencing attenuated IL-1ß-induced viability inhibition, apoptosis, inflammation and ECM degradation in CHON-001 cells. Moreover, LINC00313 inhibited TRAF1 expression through promoting DNA methyltransferase 1 (DNMT1) mediated promoter methylation. TRAF1 overexpression reversed the effects of LINC00313 on IL-1ß-induced chondrocyte injury. LINC00313 overexpression inhibited the ASK1/JNK signaling pathway, and JNK activator reversed the effect. In addition, Lv-LINC00313 treatment alleviated cartilage tissue damage and cartilage matrix degradation in OA mice. CONCLUSIONS: LINC00313 alleviated OA progression through inhibiting TRAF1 expression and the ASK1/JNK signaling pathway.
Asunto(s)
Sistema de Señalización de MAP Quinasas , Osteoartritis , Animales , Apoptosis , ADN/metabolismo , ADN/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/farmacología , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Interferente Pequeño , Factor 1 Asociado a Receptor de TNF/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Host genetics are important to consider in the role of resistance or susceptibility for developing active pulmonary tuberculosis (TB). Several association studies have reported the role of variants in STAT4 and TRAF1/C5 as risk factors to autoimmune diseases. Nevertheless, more data is needed to elucidate the role of these gene variants in infectious disease. Our data reports for the first time, variant rs10818488 in the TRAF1/C5 gene (found 47% of the population worldwide), is associated with susceptibility (OR = 1.51) to development TB. Multivariate analysis evidenced association between rs10818488 TRAF1/C5 and risk to multibacillary TB (OR = 4.18), confers increased bacteria load in the lung, indicates a decreased ability to control pathogen levels in the lung, and spread of the pathogen to new hosts. We showed that the "loss-of-function" variant in TRAF1/C5 led to susceptibility for TB by decreased production of TNF-α. Our results suggest the role of variant TRAF1/C5 in susceptibility to TB as well as in clinical presentation of multibacillary TB.
Asunto(s)
Factor 1 Asociado a Receptor de TNF , Tuberculosis Pulmonar , Complemento C5 , Predisposición Genética a la Enfermedad , Humanos , Pulmón/metabolismo , Polimorfismo de Nucleótido Simple , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismo , Tuberculosis Pulmonar/genética , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
The TNFR superfamily member 4-1BB is important in the establishment of tissue-resident memory T cells (Trm) in the lung tissue following influenza infection. Moreover, supraphysiological boosting of 4-1BB in the airways during the boost phase of a prime-boost immunization regimen increases the long-lived Trm population, correlating with increased protection against heterotypic challenge. However, little is known about how 4-1BB contributes to the establishment of the lung Trm population. In this study, we show that effects of 4-1BB on lung Trm accumulation are already apparent at the effector stage, suggesting that the major role of 4-1BB in Trm formation is to allow persistence of CD8 T effector cells in the lung as they transition to Trm. Using supraphysiological stimulation of 4-1BB in the boost phase of a prime-boost immunization, we show that the effect of 4-1BB on Trm generation requires local delivery of both Ag and costimulation, is inhibited by rapamycin treatment during secondary CD8 effector T cell expansion, and is dependent on the signaling adaptor TRAF1. The decrease in lung Trm following early rapamycin treatment is accompanied by increased circulating memory T cells, as well as fewer effectors, suggesting a role for mammalian target of rapamycin (mTOR) in the formation of Trm through effects on the accumulation of effector precursors. Taken together, these data point to an important role for 4-1BB, TRAF1, and mTOR in the persistence of CD8 effector T cells in the lung parenchyma, thereby allowing the transition to Trm.
Asunto(s)
Ligando 4-1BB/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Virus de la Influenza A/inmunología , Enfermedades Pulmonares/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Factor 1 Asociado a Receptor de TNF/inmunología , Serina-Treonina Quinasas TOR/inmunología , Ligando 4-1BB/genética , Animales , Linfocitos T CD8-positivos/patología , Pulmón/patología , Pulmón/virología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/virología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Factor 1 Asociado a Receptor de TNF/genética , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Eukaryotic cells use autophagy to recycle cellular components. During autophagy, autophagosomes deliver cytoplasmic contents to the vacuole or lysosome for breakdown. Mammalian cells regulate the dynamics of autophagy via ubiquitin-mediated proteolysis of autophagy proteins. Here, we show that the Arabidopsis thaliana Tumor necrosis factor Receptor-Associated Factor (TRAF) family proteins TRAF1a and TRAF1b (previously named MUSE14 and MUSE13, respectively) help regulate autophagy via ubiquitination. Upon starvation, cytoplasmic TRAF1a and TRAF1b translocated to autophagosomes. Knockout traf1a/b lines showed reduced tolerance to nutrient deficiency, increased salicylic acid and reactive oxygen species levels, and constitutive cell death in rosettes, resembling the phenotypes of autophagy-defective mutants. Starvation-activated autophagosome accumulation decreased in traf1a/b root cells, indicating that TRAF1a and TRAF1b function redundantly in regulating autophagosome formation. TRAF1a and TRAF1b interacted in planta with ATG6 and the RING finger E3 ligases SINAT1, SINAT2, and SINAT6 (with a truncated RING-finger domain). SINAT1 and SINAT2 require the presence of TRAF1a and TRAF1b to ubiquitinate and destabilize AUTOPHAGY PROTEIN6 (ATG6) in vivo. Conversely, starvation-induced SINAT6 reduced SINAT1- and SINAT2-mediated ubiquitination and degradation of ATG6. Consistently, SINAT1/SINAT2 and SINAT6 knockout mutants exhibited increased tolerance and sensitivity, respectively, to nutrient starvation. Therefore, TRAF1a and TRAF1b function as molecular adaptors that help regulate autophagy by modulating ATG6 stability in Arabidopsis.
Asunto(s)
Arabidopsis/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Autofagia/fisiología , Beclina-1/genética , Beclina-1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Serrated adenocarcinoma (SAC) and colorectal carcinomas showing histological and molecular features of high-level of microsatellite instability (hmMSI-H) are both end points of the serrated pathway of colorectal carcinogenesis. Despite common features (right-sided location, CpG island methylation phenotype and BRAF mutation) there are no studies comparing the microRNA (miRNA) expression profiles in SACs and hmMSI-H. The microtranscriptome from 12 SACs and 8 hmMSI-H were analysed using Affymetrix GeneChip miRNA 3.0 arrays and differentially enriched functions involving immune response were observed from this comparison. miR-181a-2* was found significantly more expressed in hmMSI-H than in SAC and higher expression of this miRNA in microsatellite unstable colorectal cancer were corroborated by Real-Time PCR in an extended series (61 SAC, 21 hmMSI-H). An analysis of genes possibly regulated by miR-181a-2* was carried out and, amongst these, an inverse correlation of NAMPT with miR-181a-2* expression was observed, whereas, for TRAF1 and SALL1, additional regulation mechanisms involving CpG island methylation were observed. miR-181a-2* is associated with particular histological and molecular features of colorectal carcinomas within the serrated pathological pathway and might play a role in the immune responses of microsatellite instability carcinomas.
Asunto(s)
Carcinoma/metabolismo , Neoplasias Colorrectales/metabolismo , MicroARNs/metabolismo , Inestabilidad de Microsatélites , Anciano , Carcinoma/genética , Carcinoma/fisiopatología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/fisiopatología , Islas de CpG , Citocinas/genética , Citocinas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Ontología de Genes , Humanos , Masculino , MicroARNs/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor 1 Asociado a Receptor de TNF/genética , Factor 1 Asociado a Receptor de TNF/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
RATIONALE: The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. OBJECTIVE: We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1ß, and TLRs (toll-like receptors). METHODS AND RESULTS: Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1-/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by ß3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. CONCLUSIONS: Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism.
Asunto(s)
Metabolismo de los Lípidos , Obesidad/genética , Factor 1 Asociado a Receptor de TNF/genética , Adipocitos/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismoRESUMEN
IL-7 therapy has been evaluated in patients who do not regain normal CD4 T cell counts after virologically successful antiretroviral therapy. IL-7 increases total circulating CD4 and CD8 T cell counts; however, its effect on HIV-specific CD8 T cells has not been fully examined. TRAF1, a prosurvival signaling adaptor required for 4-1BB-mediated costimulation, is lost from chronically stimulated virus-specific CD8 T cells with progression of HIV infection in humans and during chronic lymphocytic choriomeningitis infection in mice. Previous results showed that IL-7 can restore TRAF1 expression in virus-specific CD8 T cells in mice, rendering them sensitive to anti-4-1BB agonist therapy. In this article, we show that IL-7 therapy in humans increases the number of circulating HIV-specific CD8 T cells. For a subset of patients, we also observed an increased frequency of TRAF1+ HIV-specific CD8 T cells 10 wk after completion of IL-7 treatment. IL-7 treatment increased levels of phospho-ribosomal protein S6 in HIV-specific CD8 T cells, suggesting increased activation of the metabolic checkpoint kinase mTORC1. Thus, IL-7 therapy in antiretroviral therapy-treated patients induces sustained changes in the number and phenotype of HIV-specific T cells.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/inmunología , Proteína S6 Ribosómica/metabolismo , Factor 1 Asociado a Receptor de TNF/metabolismo , Terapia Antirretroviral Altamente Activa , Recuento de Linfocito CD4 , Citocinas/biosíntesis , Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Interleucina-7/farmacología , Interleucina-7/uso terapéutico , Recuento de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Proteína S6 Ribosómica/genética , Factor 1 Asociado a Receptor de TNF/genética , Carga ViralRESUMEN
Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.
Asunto(s)
Complemento C5/genética , Epilepsia/parasitología , Predisposición Genética a la Enfermedad/genética , Neurocisticercosis/genética , Factor 1 Asociado a Receptor de TNF/genética , Adolescente , Adulto , Anciano , Animales , Encéfalo/parasitología , Líquido Cefalorraquídeo/parasitología , Epilepsia/genética , Femenino , Haplotipos/genética , Humanos , Masculino , México , Persona de Mediana Edad , Neurocisticercosis/parasitología , Carga de Parásitos , Polimorfismo de Nucleótido Simple/genética , Taenia solium/patogenicidad , Adulto JovenRESUMEN
Objective: To investigatea cellular/molecular mechanism of the CD40/TRAF1 signalling pathway involved in Rheumatoid arthritis (RA). Methods: 16 patients with active RA and 9 patients with Fractures who underwent total knee or hip replacement in The First Affiliated Hospital of Soochow University were included in the study. Synovial tissues (ST) and serum were obtained from each patient. The CD40, TRAF1, NF-κB p65 were detected by ELISA and Immunohistochemistry in serum and tissue respectively. Real time-PCR (RT-PCR) was applied to measure NF-κB-related gene expression. Results: CD40 and TRAF1 positive area (%) in RA patients were 28.7±5.4, 34.3±4.8 respectively, which were significantly higher (P<0.05) than Fracture controls (21.2±9.5, 21.6±8.7 respectively). The expression of total NF-κB p65, and phospho-NF-κB p65 proteins, as well as NF-κB-related gene expression, including cytokines (TNFα, IL-6), chemokines (MCP-1),and adhesion molecules (ICAM-1) were significantly higher in the ST of RA patients compared to Fracture controls. Conclusion: It is thus possible that the CD40/TRAF1 pathway acted as a positive regulator through NF-κB activation and NF-κB-dependent proinflammatory genes in RA.
Asunto(s)
Artritis Reumatoide/genética , Antígenos CD40/metabolismo , Transducción de Señal , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción ReIA/metabolismo , Antígenos CD40/genética , Células Cultivadas , Expresión Génica , Humanos , Membrana Sinovial , Factor 1 Asociado a Receptor de TNF/genética , Factor de Transcripción ReIA/genéticaRESUMEN
TRAF1/2 and cIAP1/2 are members of the TNF receptor-associated factor (TRAF) and the inhibitor of apoptosis (IAP) families, respectively. They are critical for canonical and noncanonical NF-kappaB signaling pathways. Here, we report the crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes. A TRAF2 trimer interacts with one cIAP2 both in the crystal and in solution. Two chains of the TRAF2 trimer directly contact cIAP2, and key residues at the interface are confirmed by mutagenesis. TRAF1 and TRAF2 preferentially form the TRAF1: (TRAF2)(2) heterotrimer, which interacts with cIAP2 more strongly than TRAF2 alone. In contrast, TRAF1 alone interacts very weakly with cIAP2. Surprisingly, TRAF1 and one chain of TRAF2 in the TRAF1: (TRAF2)(2): cIAP2 ternary complex mediate interaction with cIAP2. Because TRAF1 is upregulated by many stimuli, it may modulate the interaction of TRAF2 with cIAP1/2, which explains regulatory roles of TRAF1 in TNF signaling.