Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 543(7646): 573-576, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297716

RESUMEN

Cell proliferation and survival require the faithful maintenance and propagation of genetic information, which are threatened by the ubiquitous sources of DNA damage present intracellularly and in the external environment. A system of DNA repair, called the DNA damage response, detects and repairs damaged DNA and prevents cell division until the repair is complete. Here we report that methylation at the 6 position of adenosine (m6A) in RNA is rapidly (within 2 min) and transiently induced at DNA damage sites in response to ultraviolet irradiation. This modification occurs on numerous poly(A)+ transcripts and is regulated by the methyltransferase METTL3 (methyltransferase-like 3) and the demethylase FTO (fat mass and obesity-associated protein). In the absence of METTL3 catalytic activity, cells showed delayed repair of ultraviolet-induced cyclobutane pyrimidine adducts and elevated sensitivity to ultraviolet, demonstrating the importance of m6A in the ultraviolet-responsive DNA damage response. Multiple DNA polymerases are involved in the ultraviolet response, some of which resynthesize DNA after the lesion has been excised by the nucleotide excision repair pathway, while others participate in trans-lesion synthesis to allow replication past damaged lesions in S phase. DNA polymerase κ (Pol κ), which has been implicated in both nucleotide excision repair and trans-lesion synthesis, required the catalytic activity of METTL3 for immediate localization to ultraviolet-induced DNA damage sites. Importantly, Pol κ overexpression qualitatively suppressed the cyclobutane pyrimidine removal defect associated with METTL3 loss. Thus, we have uncovered a novel function for RNA m6A modification in the ultraviolet-induced DNA damage response, and our findings collectively support a model in which m6A RNA serves as a beacon for the selective, rapid recruitment of Pol κ to damage sites to facilitate repair and cell survival.


Asunto(s)
Daño del ADN/efectos de la radiación , Metilación , ARN/química , ARN/metabolismo , Rayos Ultravioleta , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Biocatálisis/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Metilación/efectos de la radiación , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Ratones , Poli A/metabolismo , ARN/efectos de la radiación , Fase S/efectos de la radiación
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445206

RESUMEN

UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de la radiación , Fase S/efectos de la radiación , Serpinas/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular Tumoral , Humanos , Serpinas/genética
3.
Curr Genet ; 66(4): 749-763, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32076806

RESUMEN

Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.


Asunto(s)
Ciclo Celular/genética , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleotidiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
4.
Audiol Neurootol ; 23(3): 173-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30300901

RESUMEN

Survival of cochlear sensory epithelial cells may be regulated by inhibitor of differentiation-1 (Id1) and the N-methyl-D-aspartic acid (NMDA) receptor. However, it is unclear whether Id1 and the NMDA receptor are involved in the radiation-mediated survival of rat cochlear sensory epithelial cells. Here, we show that the percentage of apoptotic cells increased, the percentage of cells in the S phase decreased, Id1 mRNA and protein expression decreased and the NMDA receptor subtype 2B (NR2B) mRNA and protein level increased in OC1 cells after radiation. Cells infected with the Id1 gene exhibited higher Id1 mRNA and protein levels and lower NR2B mRNA and protein levels than the control cells. In contrast, after transfection of the Id1 siRNA into OC1 cells, Id1 mRNA and protein expression decreased and NR2B mRNA and protein expression increased relative to that of the control group. Additionally, treatment with ifenprodil for 24 h before radiation reduced apoptosis and increased the percentage of cells in the S phase. Our results suggest that Id1 and NR2B might regulate the survival of OC1 cells following radiation.


Asunto(s)
Células Epiteliales/efectos de la radiación , Proteína 1 Inhibidora de la Diferenciación/efectos de la radiación , Órgano Espiral/efectos de la radiación , ARN Mensajero/efectos de la radiación , Receptores de N-Metil-D-Aspartato/efectos de la radiación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cóclea/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Órgano Espiral/citología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Piperidinas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Transfección
5.
Mol Cell ; 40(3): 364-76, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21035370

RESUMEN

The histone methyltransferase PR-Set7/Set8 is the sole enzyme that catalyzes monomethylation of histone H4 at K20 (H4K20me1). Previous reports document disparate evidence regarding PR-Set7 expression during the cell cycle, the biological relevance of PR-Set7 interaction with PCNA, and its role in the cell. We find that PR-Set7 is indeed undetectable during S phase and instead is detected during late G2, mitosis, and early G1. PR-Set7 is transiently recruited to laser-induced DNA damage sites through its interaction with PCNA, after which 53BP1 is recruited dependent on PR-Set7 catalytic activity. During the DNA damage response, PR-Set7 interaction with PCNA through a specialized "PIP degron" domain targets it for PCNA-coupled CRL4(Cdt2)-dependent proteolysis. PR-Set7 mutant in its "PIP degron" is now detectable during S phase, during which the mutant protein accumulates. Outside the chromatin context, Skp2 promotes PR-Set7 degradation as well. These findings demonstrate a stringent spatiotemporal control of PR-Set7 that is essential for preserving the genomic integrity of mammalian cells.


Asunto(s)
Proteínas Cullin/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Biocatálisis/efectos de la radiación , Línea Celular Tumoral , Activación Enzimática/efectos de la radiación , Estabilidad de Enzimas , N-Metiltransferasa de Histona-Lisina/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación , Estructura Terciaria de Proteína , Fase S/efectos de la radiación , Transducción de Señal/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/metabolismo , Rayos Ultravioleta
6.
Mol Cell ; 40(1): 22-33, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932472

RESUMEN

The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cullin/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Fase S , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de la radiación , Proteínas Cullin/genética , Daño del ADN , Replicación del ADN , Regulación hacia Abajo , Inestabilidad Genómica , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Mutación , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Factores de Tiempo , Ubiquitina-Proteína Ligasas , Ubiquitinación , Xenopus
7.
Nucleic Acids Res ; 43(20): 9817-34, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26323318

RESUMEN

NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.


Asunto(s)
Inestabilidad Genómica , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Reparación del ADN por Recombinación , Línea Celular , Cromatina/metabolismo , Aberraciones Cromosómicas , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Células HeLa/fisiología , Humanos , Mitomicina/farmacología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/efectos de la radiación , Proteínas de Unión al ARN , Recombinasa Rad51/metabolismo , Fase S/efectos de la radiación , Homología de Secuencia de Aminoácido , Rayos X
8.
J Biol Chem ; 290(34): 20919-20933, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26134572

RESUMEN

The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.


Asunto(s)
ADN Glicosilasas/genética , Reparación del ADN , Replicación del ADN , Genoma Humano , Secuencia de Bases , Daño del ADN , ADN Glicosilasas/deficiencia , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Datos de Secuencia Molecular , Estrés Oxidativo , Estructura Terciaria de Proteína , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación C , Fase S/genética , Fase S/efectos de la radiación , Transducción de Señal
9.
Bull Exp Biol Med ; 161(6): 837-840, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783285

RESUMEN

Using the autoradiographic method, we studied the kinetics of DNA synthesis over the mitotic cycle in mouse corneal epithelium cells in delayed periods after γ-irradiation in different points of the S phase of the first mitotic cycle. The index labeled cells during 1-3 periods of DNA synthesis most adequately reflects quantitative changes in the cell population composition after cell exposure during the first S period. The relative number of labeled S phase cells in the second mitotic cycle in experiments where the cells were irradiated in the S1 phase of the first S period was 4-fold lower than in experiments where the cells were exposed during S2 phase. This effect is determined by inhibition of the transcription factors activation. It seems that two territorially different sites of the genome controlling the regulatory stimuli and involved in modification of the quantitative composition of the population are responsible for changes in its quantitative balance.


Asunto(s)
Córnea/efectos de la radiación , Replicación del ADN/efectos de la radiación , Células Epiteliales/efectos de la radiación , Rayos gamma , Fase S/efectos de la radiación , Animales , Autorradiografía , Recuento de Células , Córnea/citología , Córnea/metabolismo , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/citología , Células Epiteliales/metabolismo , Instilación de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Coloración y Etiquetado/métodos , Timidina/metabolismo , Tritio
10.
Cancer Cell ; 11(2): 175-89, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17292828

RESUMEN

In response to DNA damage, eukaryotic cells activate ATM-Chk2 and/or ATR-Chk1 to arrest the cell cycle and initiate DNA repair. We show that, in the absence of p53, cells depend on a third cell-cycle checkpoint pathway involving p38MAPK/MK2 for cell-cycle arrest and survival after DNA damage. MK2 depletion in p53-deficient cells, but not in p53 wild-type cells, caused abrogation of the Cdc25A-mediated S phase checkpoint after cisplatin exposure and loss of the Cdc25B-mediated G2/M checkpoint following doxorubicin treatment, resulting in mitotic catastrophe and pronounced regression of murine tumors in vivo. We show that the Chk1 inhibitor UCN-01 also potently inhibits MK2, suggesting that its clinical efficacy results from the simultaneous disruption of two critical checkpoint pathways in p53-defective cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , División Celular/efectos de los fármacos , División Celular/efectos de la radiación , Supervivencia Celular , Células Cultivadas , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Doxorrubicina/farmacología , Fase G2/efectos de los fármacos , Fase G2/efectos de la radiación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Ratones Desnudos , Mitosis/efectos de los fármacos , Mitosis/efectos de la radiación , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Quinasas/genética , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Estaurosporina/análogos & derivados , Estaurosporina/farmacología , Rayos Ultravioleta , Fosfatasas cdc25/metabolismo
11.
Lasers Med Sci ; 30(1): 77-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24964751

RESUMEN

Photodynamic therapy (PDT) using photosensitized reaction to produce cytotoxicity was used for cancer therapy in recent years. To study the effectiveness of PDT mediated by a novel photosensitizer (PS), DTPP 5-(4'-(2″-dicarboxymethylamino)acetamidophenyl)-10, 15, 20-triphenylporphyrin, on lung cancer A549 cell lines in vitro, DTPP was employed in different concentrations (2, 4, 6, 8, 10, 12, 15, 20, 25, and 30 µg/ml) and combined with 650 nm laser of different power densities (0.6, 1.2, 2.4, 4.8, 7.2, and 9.6 J/cm(2)) that resulted in obvious inhibition of cell proliferation and apoptosis. Results showed that cell survival rates have a dependent relationship with time and PS concentrations and no significant cytotoxicity was induced by DTPP itself. Apoptosis and cell cycle S arrest were observed; cytoskeleton morphologic observation revealed collapse, sparkling, and shrunken shapes. Apoptosis-related protein caspase-3 overexpression was detected while caspase-9, bcl-2, and cytoskeleton protein beta-catenin were in low levels of expression than the control. Cleavage of beta-catenin by caspase-3 or other proteases from the lysosome might be the main reason for the cytoskeleton collapse as beta-tubulin and actin were at a stable level 12 h after PDT. This paper gives a better understanding of the effectiveness of DTPP-mediated PDT in lung cancer A549 cells both with regard to dosimetry and apoptosis changes.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas del Citoesqueleto/metabolismo , Rayos Láser , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Compuestos Organofosforados/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Apoptosis/efectos de la radiación , Western Blotting , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efectos de la radiación , Humanos , Compuestos Organofosforados/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fase S/efectos de los fármacos , Fase S/efectos de la radiación
12.
Nucleic Acids Res ; 40(17): 8336-47, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22730303

RESUMEN

Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Reparación del ADN por Recombinación , Fase S/genética , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular , Endonucleasas , Humanos , Recombinasa Rad51/análisis , Tolerancia a Radiación , Fase S/efectos de la radiación
13.
Acta Odontol Scand ; 72(7): 481-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24460032

RESUMEN

OBJECTIVE: To evaluate the effects of resveratrol and irradiation on oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Resveratrol was administered at doses of 5, 10, 25, 50 and 100 µM to PE/CA-PJ15 (OSCC) cultures irradiated with different doses (1, 2.5 and 5 Gy). Effects upon cell viability, apoptosis and migration were evaluated after 24, 48 and 72 h incubation. RESULTS: After 72 h of incubation, the 100 µM dose of resveratrol induced the greatest decrease in cell viability at all irradiation doses. After 24, 48 and 72 h of incubation, 100 µM of resveratrol induced the greatest cell apoptosis at all irradiation doses. The greatest alterations in the distribution of the G0-G1, G2-M and S phases of the cell cycle were recorded with 50 and 100 µM of resveratrol; after 24, 48 and 72 h of incubation, both these doses resulted in an increase in the S phase, at the expense of the G0-G1 and G2-M phases. CONCLUSIONS: Resveratrol increases cytotoxic activity in the PE/CA-PJ15 cell line and reduces cell migration capacity, while the combination of resveratrol and irradiation exerts a synergic effect.


Asunto(s)
Anticarcinógenos/uso terapéutico , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Estilbenos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/radioterapia , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/radioterapia , Dosificación Radioterapéutica , Resveratrol , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Factores de Tiempo
14.
Bull Exp Biol Med ; 157(4): 496-500, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110092

RESUMEN

Using the autoradiographic method we studied the kinetics of DNA synthesis during themitotic cycle of mouse corneal epithelial cells after γ-irradiation in a dose of 2 Gy at different S-phase points. Normally, S phase in corneal epitheliocytes includes S1 and S2 phases separated by an interval during which DNA is not synthesized. Double exposure modifies the pattern of DNA synthesis in the cell due to reparation of injuries. The reparative processes in the cell are realized during the interval between the S1 and S2 phases and at the expense of g1 period of the mitotic cycle. If the cell has no time for reparation, the injuries are transferred into the class of "latent" injuries.


Asunto(s)
Córnea/efectos de la radiación , Reparación del ADN/efectos de la radiación , ADN/biosíntesis , Células Epiteliales/efectos de la radiación , Fase S/efectos de la radiación , Animales , Transporte Biológico , Células Cultivadas , Córnea/citología , Córnea/metabolismo , Daño del ADN , Células Epiteliales/citología , Células Epiteliales/metabolismo , Rayos gamma , Masculino , Ratones , Timidina/metabolismo , Factores de Tiempo , Tritio
15.
J Biol Chem ; 287(4): 2531-43, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22123827

RESUMEN

Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Rayos gamma/efectos adversos , Humanos , Fosforilación/fisiología , Fosforilación/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Fase S/efectos de la radiación , Proteínas Supresoras de Tumor/genética
16.
J Pharmacol Exp Ther ; 347(3): 669-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24068833

RESUMEN

Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after IR abrogated cell death.


Asunto(s)
Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Protectores contra Radiación , Adulto , Animales , Western Blotting , Caspasa 3/metabolismo , Caspasa 7/metabolismo , División Celular/efectos de los fármacos , División Celular/efectos de la radiación , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Citometría de Flujo , Fase G1/efectos de los fármacos , Fase G1/efectos de la radiación , Fase G2/efectos de los fármacos , Fase G2/efectos de la radiación , Rayos gamma , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Relación Estructura-Actividad
17.
Mutat Res ; 756(1-2): 206-12, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23792210

RESUMEN

The paper presents a model of double strand breaks (DSB) repair in G1 and early S phases of the cell cycle. The model is based on a plethora of published information on biochemical modification of DSB induced by ionizing radiation. So far, three main DSB repair pathways have been identified, including nonhomologous end-joining (NHEJ), homologous recombination (HR), and microhomology-mediated end-joining (MMEJ). During G1 and early S phases of the cell cycle, NHEJ and MMEJ repair pathways are activated dependent on the type of double strand breaks. Simple DSB are a substrate for NHEJ, while complex DSB and DSB in heterochromatin require further end processing. Repair of all DSB start with NHEJ presynaptic processes, and depending on the type of DSB pursue simple ligation, further end processing prior to ligation, or resection. Using law of mass action the model is translated into a mathematical formalism. The solution of the formalism provides the step by step and overall repair kinetics. The overall repair kinetics are compared with the published experimental measurements. Our calculations are in agreement with the experimental results and show that the complex types of DSBs are repaired with slow repair kinetics. The G1 and early S phase model could be employed to predict the kinetics of DSB repair for damage induced by high LET radiation.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/genética , Fase G1/genética , Modelos Moleculares , Reparación del ADN por Recombinación/genética , Fase S/genética , Animales , Fase G1/efectos de la radiación , Radiación Ionizante , Fase S/efectos de la radiación
18.
PLoS Genet ; 6(5): e1000957, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20502677

RESUMEN

Although the decision to proceed through cell division depends largely on the metabolic status or the size of the cell, the timing of cell division is often set by internal clocks such as the circadian clock. Light is a major cue for circadian clock entrainment, and for photosynthetic organisms it is also the main source of energy supporting cell growth prior to cell division. Little is known about how light signals are integrated in the control of S phase entry. Here, we present an integrated study of light-dependent regulation of cell division in the marine green alga Ostreococcus. During early G1, the main genes of cell division were transcribed independently of the amount of light, and the timing of S phase did not occur prior to 6 hours after dawn. In contrast S phase commitment and the translation of a G1 A-type cyclin were dependent on the amount of light in a cAMP-dependent manner. CyclinA was shown to interact with the Retinoblastoma (Rb) protein during S phase. Down-regulating Rb bypassed the requirement for CyclinA and cAMP without altering the timing of S phase. Overexpression of CyclinA overrode the cAMP-dependent control of S phase entry and led to early cell division. Therefore, the Rb pathway appears to integrate light signals in the control of S phase entry in Ostreococcus, though differential transcriptional and posttranscriptional regulations of a G1 A-type cyclin. Furthermore, commitment to S phase depends on a cAMP pathway, which regulates the synthesis of CyclinA. We discuss the relative involvements of the metabolic and time/clock signals in the photoperiodic control of cell division.


Asunto(s)
Luz , Plancton/efectos de la radiación , Proteína de Retinoblastoma/metabolismo , Fase S/efectos de la radiación , Plancton/citología , Plancton/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(4): 1506-11, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20080624

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a high molecular weight protein serine/threonine kinase that plays a central role in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of DNA double-strand breaks. Little is known about the regulatory mechanisms for ATM expression itself. MicroRNAs are naturally existing regulators that modulate gene expression in a sequence-specific manner. Here, we show that a human microRNA, miR-421, suppresses ATM expression by targeting the 3'-untranslated region (3'UTR) of ATM transcripts. Ectopic expression of miR-421 resulted in S-phase cell cycle checkpoint changes and an increased sensitivity to ionizing radiation, creating a cellular phenotype similar to that of cells derived from ataxia-telangiectasia (A-T) patients. Blocking the interaction between miR-421 and ATM 3'UTR with an antisense morpholino oligonucleotide rescued the defective phenotype caused by miR-421 overexpression, indicating that ATM mediates the effect of miR-421 on cell cycle checkpoint and radiosensitivity. Overexpression of the N-Myc transcription factor, an oncogene frequently amplified in neuroblastoma, induced miR-421 expression, which, in turn, down-regulated ATM expression, establishing a linear signaling pathway that may contribute to N-Myc-induced tumorigenesis in neuroblastoma. Taken together, our findings implicate a previously undescribed regulatory mechanism for ATM expression and ATM-dependent DNA damage response and provide several potential targets for treating neuroblastoma and perhaps A-T.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Humanos , Neuroblastoma/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Fase S/efectos de la radiación , Transducción de Señal , Transcripción Genética , Proteínas Supresoras de Tumor/genética
20.
Nat Genet ; 33(1): 80-4, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12447371

RESUMEN

Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.


Asunto(s)
Disparidad de Par Base/genética , Reparación del ADN , Proteínas de Unión al ADN , Proteínas Proto-Oncogénicas , Tolerancia a Radiación/genética , Fase S , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , Activación Enzimática , Eliminación de Gen , Humanos , Modelos Biológicos , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Fase S/efectos de la radiación , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA