Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38975829

RESUMEN

Male pheromones accelerate the development of hermaphrodite larvae in Caenorhabditis elegans, but the importance of this phenomenon is not well understood. A new paper in Development shows that pheromone exposure during larval stage 3 helps coordinate behaviour and development by modulating the timing of the transition to larval stage 4. To learn more about the story behind the paper, we caught up with first author Denis Faerberg who carried out the work in the lab of the corresponding author Ilya Ruvinsky at Northwestern University, USA.


Asunto(s)
Caenorhabditis elegans , Animales , Feromonas/metabolismo , Humanos , Larva/crecimiento & desarrollo , Biología Evolutiva/historia , Historia del Siglo XXI , Masculino , Historia del Siglo XX
2.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38975828

RESUMEN

Environment in general and social signals in particular could alter development. In Caenorhabditis elegans, male pheromones hasten development of hermaphrodite larvae. We show that this involves acceleration of growth and both somatic and germline development during the last larval stage (L4). Larvae exposed to male pheromones spend more time in L3 and less in the quiescent period between L3 and L4. This behavioral alteration improves provision in early L4, likely allowing for faster development. Larvae must be exposed to male pheromones in late L3 for behavioral and developmental effects to occur. Latter portions of other larval stages also contain periods of heightened sensitivity to environmental signals. Behavior during the early part of the larval stages is biased toward exploration, whereas later the emphasis shifts to food consumption. We argue that this organization allows assessment of the environment to identify the most suitable patch of resources, followed by acquisition of sufficient nutrition and salient information for the developmental events in the next larval stage. Evidence from other species indicates that such coordination of behavior and development may be a general feature of larval development.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Larva , Feromonas , Animales , Larva/crecimiento & desarrollo , Caenorhabditis elegans/crecimiento & desarrollo , Masculino , Feromonas/metabolismo , Trastornos del Desarrollo Sexual
3.
Proc Natl Acad Sci U S A ; 121(12): e2322453121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470919

RESUMEN

The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.


Asunto(s)
Diterpenos , Psychodidae , Animales , Feromonas/metabolismo , Psychodidae/metabolismo , Diterpenos/metabolismo , Terpenos , Monoterpenos
4.
PLoS Genet ; 20(3): e1011186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483976

RESUMEN

Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Femenino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Calcio/metabolismo , Fertilización , Oocitos/metabolismo , Feromonas/genética , Feromonas/metabolismo
5.
BMC Biol ; 22(1): 108, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714997

RESUMEN

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Genes del Tipo Sexual de los Hongos/genética , Ascomicetos/genética , Ascomicetos/fisiología , Feromonas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
6.
Genesis ; 62(3): e23603, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38738564

RESUMEN

The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors-sildenafil or tadalafil-to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male-male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Órgano Vomeronasal , Animales , Órgano Vomeronasal/metabolismo , Ratones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Masculino , Inhibidores de Fosfodiesterasa 5/farmacología , Tadalafilo/farmacología , Citrato de Sildenafil/farmacología , Feromonas/metabolismo , Agresión/fisiología , Femenino , Ratones Endogámicos C57BL
7.
J Neurophysiol ; 131(3): 455-471, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38264787

RESUMEN

Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.


Asunto(s)
Neuronas Receptoras Olfatorias , Órgano Vomeronasal , Neuronas Receptoras Olfatorias/fisiología , Potenciales de Acción , Canales Iónicos/metabolismo , Feromonas/metabolismo , Órgano Vomeronasal/metabolismo
8.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853237

RESUMEN

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Asunto(s)
Alelopatía , Antioxidantes , Extractos Vegetales , Reguladores del Crecimiento de las Plantas , Rumex , Trifolium , Trifolium/crecimiento & desarrollo , Trifolium/metabolismo , Trifolium/efectos de los fármacos , Extractos Vegetales/farmacología , Antioxidantes/metabolismo , Rumex/crecimiento & desarrollo , Rumex/metabolismo , Rumex/efectos de los fármacos , Rumex/química , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Metanol , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Feromonas/farmacología , Feromonas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/química
9.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228178

RESUMEN

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Asunto(s)
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neuronas Receptoras Olfatorias , Ácidos Pentanoicos , Receptores Odorantes , Animales , Femenino , Bombyx/metabolismo , Sensilos/fisiología , Olfato , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Feromonas/metabolismo
10.
J Anat ; 245(1): 109-136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366249

RESUMEN

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Asunto(s)
Órgano Vomeronasal , Lobos , Animales , Órgano Vomeronasal/fisiología , Lobos/fisiología , Masculino , Feromonas/metabolismo , Femenino , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/anatomía & histología , Perros , Inmunohistoquímica
11.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517067

RESUMEN

Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.


Asunto(s)
Encéfalo , MicroARNs , Animales , Abejas/genética , Abejas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Encéfalo/metabolismo , Técnicas de Silenciamiento del Gen , Transcriptoma , Feromonas/metabolismo
12.
J Exp Biol ; 227(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38725404

RESUMEN

Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.


Asunto(s)
Encéfalo , Feromonas , Animales , Abejas/fisiología , Abejas/genética , Abejas/efectos de los fármacos , Feromonas/metabolismo , Feromonas/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Femenino , Antenas de Artrópodos/metabolismo , Antenas de Artrópodos/fisiología , Antenas de Artrópodos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
13.
Microb Ecol ; 87(1): 55, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530469

RESUMEN

Reproducibility is a fundamental principle in science, ensuring reliable and valid findings. However, replication studies are scarce, particularly in ecology, due to the emphasis on novelty for publication. We explored the possibility of replicating original findings in the field of microbial and chemical ecology by conducting a conceptual replication of a previous study analysing the sex-specific differences in the microbial communities inhabiting the wing sacs, a scent organ with crucial functions in olfactory communication, of greater sac-winged bat (Saccopteryx bilineata). In the original study, the skin swabs from the antebrachial wing sacs of the males and wing sac rudiments of the females were analysed using culture-dependent methods to test sex-specific differences. The authors demonstrated that males have lower microbial richness and different microbial composition than females. We attempted to reproduce these findings using 16S rRNA sequencing, which offers improved accuracy in pinpointing microbial members than culture-dependent methods because of advanced statistical methods. Our study validated the original study's findings: Males had a lower microbial richness, and the community composition differed between the sexes. Furthermore, in the current study, males had an increased abundance of bacteria that might potentially be involved in odour production and degradation of malodorous substances and antimicrobial production. Our conceptual replication study corroborated that microbes can play a role in shaping their host's olfactory phenotype and consequently influence sexual selection. Furthermore, the current study emphasises the importance of replication efforts and hopefully encourages a culture that values replication studies in scientific practice.


Asunto(s)
Quirópteros , Microbiota , Animales , Masculino , Femenino , Odorantes , Olfato , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Bacterias , Feromonas/metabolismo , Microbiota/genética
14.
J Chem Ecol ; 50(3-4): 100-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270733

RESUMEN

Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ácido Graso Desaturasas , Atractivos Sexuales , Conducta Sexual Animal , Animales , Masculino , Femenino , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Atractivos Sexuales/metabolismo , Atractivos Sexuales/farmacología , Ácidos Oléicos/metabolismo , Feromonas/metabolismo
15.
J Chem Ecol ; 50(3-4): 122-128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388901

RESUMEN

The scarab genus Osmoderma (Coleoptera: Scarabaeidae) includes several large species called hermit beetles that develop within dead and decaying hardwood trees. Males of at least three Palearctic species produce the aggregation-sex pheromone (R)-(+)-γ-decalactone, including the endangered O. eremita (Scopoli). However, hermit beetles have received less attention in the western hemisphere, resulting in a large gap in our knowledge of the chemical ecology of Nearctic species. Here, we identify (R)-( +)-γ-decalactone as the primary component of the aggregation-sex pheromone of the North American species Osmoderma eremicola (Knoch). Field trials at sites in Wisconsin and Illinois revealed that both sexes were attracted to lures containing (R)-(+)-γ-decalactone or the racemate, but only males of O. eremicola produced the pheromone in laboratory bioassays, alongside an occasional trace of the chain-length analog γ-dodecalactone. Females of the congener O. scabra (Palisot de Beauvois) were also significantly attracted by γ-decalactone, suggesting further conservation of the pheromone, as were females of the click beetle Elater abruptus Say (Coleoptera: Elateridae), suggesting that this compound may have widespread kairomonal activity. Further research is needed to explore the behavioral roles of both lactones in mediating behavioral and ecological interactions among these beetle species.


Asunto(s)
Escarabajos , Lactonas , Atractivos Sexuales , Animales , Escarabajos/fisiología , Masculino , Femenino , Atractivos Sexuales/química , Atractivos Sexuales/farmacología , Atractivos Sexuales/metabolismo , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacología , Feromonas/metabolismo , Feromonas/química , Feromonas/farmacología
16.
J Chem Ecol ; 50(5-6): 214-221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396141

RESUMEN

The bee louse Braula spp. had until recently a distribution coincident with its host the honey bee. The adult fly usually attaches to a worker honey bee and steals food from its mouth. However, not all worker bees carry Braula spp. and the mechanism used by Braula spp. to select hosts is not well understood. Using choice remounting bioassays and chemical analyses, we determined host selection and the cues used by B. coeca, a species associated with the African honey bee Apis mellifera scutellata. Braula coeca successfully remounted bees from which they were initially removed and preferred their mandibular gland pheromones (MDG) over those of bees not carrying them. The bee lice did not show any preference for the cuticular hydrocarbons of both types of workers. Chemical analyses of the MDG extracts, revealed quantitative differences between the two categories of workers, with workers carrying B. coeca having more of the queen substance (9-oxo-2(E)-decenoic acid) and worker substance (10-hydroxy-2(E)-decenoic). Braula coeca showed a dose response to the queen substance, indicating its ability to use host derived kairomones as cues that allowed it to benefit from trophallactic dominance by individuals that have a higher probability of being fed by other workers.


Asunto(s)
Feromonas , Animales , Abejas/parasitología , Abejas/fisiología , Feromonas/metabolismo , Feromonas/química , Dípteros/fisiología , Hidrocarburos/metabolismo , Hidrocarburos/química , Interacciones Huésped-Parásitos , Conducta Animal/efectos de los fármacos , Ácidos Grasos Monoinsaturados/metabolismo
17.
Biosci Biotechnol Biochem ; 88(5): 475-492, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38449372

RESUMEN

The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Meiosis , Feromonas/metabolismo , Diferenciación Sexual/genética , Glucosa/metabolismo , Nitrógeno/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
18.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685243

RESUMEN

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Asunto(s)
Proteínas de Insectos , Feromonas , Animales , Feromonas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Masculino , Femenino , Unión Proteica , Heterópteros/metabolismo , Heterópteros/genética
19.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474187

RESUMEN

Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-ß-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.


Asunto(s)
Eucalyptus , Mariposas Nocturnas , Receptores Odorantes , Masculino , Animales , Feromonas/metabolismo , Proteínas Portadoras/metabolismo , Eucalyptus/metabolismo , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo
20.
J Hazard Mater ; 465: 133466, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219583

RESUMEN

Plant autotoxicity is considered to be one of the important causes of continuous cropping obstacles in modern agriculture, which accumulates a lot of allelochemicals and xenobiotics and is difficult to solve effectively. To overcome tobacco continuous obstacles, a strain Pigmentiphaga kullae CHJ604 isolated from the environment can effectively degrade these compounds in this study. CHJ604 strain can degrade 11 types of autotoxicity allelochemicals and xenobiotics (1646.22 µg/kg) accumulated in the soil of ten-years continuous cropping of tobacco. The 11 allelochemicals and xenobiotics significantly reduced Germination Percentage (GP), Germination Index (GI), and Mean Germination Time (MGT) of tobacco seeds, and inhibited the development of leaves, stems, and roots. These negative disturbances can be eliminated by CHJ604 strain. The degradation pathways of 11 allelochemicals and xenobiotics were obtained by whole genome sequence and annotation of CHJ604 strain. The heterologous expression of a terephthalate 1,2-dioxygenase can catalyze 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxy-3-methoxy-benzaldehyde, respectively. The phthalate 4,5-dioxygenase can catalyze phthalic acid, diisobutyl phthalate, and dibutyl phthalate. These two enzymes are conducive to the simultaneous degradation of multiple allelochemicals and xenobiotics by strain CHJ604. This study provides new insights into the biodegradation of autotoxicity allelochemicals and xenobiotics as it is the first to describe a degrading bacterium of 11 types of allelochemicals and xenobiotics and their great potential in improving tobacco continuous obstacles.


Asunto(s)
Alcaligenaceae , Xenobióticos , Feromonas/metabolismo , Alcaligenaceae/metabolismo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA