Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 116(5): 1492-1507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37648286

RESUMEN

Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.


Asunto(s)
Malus , Humanos , Malus/genética , Florizina , Factores de Transcripción/genética , Floretina , Semillas/genética , Glucósidos , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 113(1): 92-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401738

RESUMEN

Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Sistemas CRISPR-Cas , Florizina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Edición Génica/métodos
3.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711037

RESUMEN

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Asunto(s)
Fertilizantes , Metaboloma , Nitrógeno , Florizina , Transcriptoma , Nitrógeno/metabolismo , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica , Espectrometría de Masas en Tándem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811892

RESUMEN

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Asunto(s)
Ascomicetos , Ciclopentanos , Resistencia a la Enfermedad , Frutas , Melatonina , Oxilipinas , Florizina , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Pyrus/metabolismo , Pyrus/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Ascomicetos/fisiología , Melatonina/farmacología , Melatonina/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Frutas/microbiología , Frutas/metabolismo , Florizina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
5.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426393

RESUMEN

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Asunto(s)
Malus , Polifenoles , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
6.
Arch Insect Biochem Physiol ; 115(4): e22112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605672

RESUMEN

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect ß-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.


Asunto(s)
Áfidos , Trehalasa , Animales , Amigdalina , Áfidos/efectos de los fármacos , Áfidos/enzimología , Inositol/análogos & derivados , Nitrilos , Floretina , Florizina , Trehalasa/antagonistas & inhibidores
7.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338482

RESUMEN

Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1ß/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.


Asunto(s)
Glucósidos , Florizina , Florizina/farmacología , Florizina/metabolismo , Antioxidantes/farmacología , Flavonoides , Hipoglucemiantes/farmacología
8.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999025

RESUMEN

Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11ß-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11ß-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.


Asunto(s)
Hipoglucemiantes , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/química , Fenoles/farmacología , Humanos , Simulación del Acoplamiento Molecular , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/química , Florizina/farmacología , Fructosa/química , Fructosa/metabolismo , Glicosilación , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo
9.
Exp Physiol ; 108(6): 865-873, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022128

RESUMEN

NEW FINDINGS: What is the central question of this study? Body mass and food intake change during the female ovarian cycle: does glucose transport by the small intestine also vary? What is the main finding and its importance? We have optimised Ussing chamber methodology to measure region-specific active glucose transport in the small intestine of adult C57BL/6 mice. Our study provides the first evidence that jejunal active glucose transport changes during the oestrous cycle in mice, and is higher at pro-oestrus than oestrus. These results demonstrate adaptation in active glucose uptake, concurrent with previously reported changes in food intake. ABSTRACT: Food intake changes across the ovarian cycle in rodents and humans, with a nadir during the pre-ovulatory phase and a peak during the luteal phase. However, it is unknown whether the rate of intestinal glucose absorption also changes. We therefore mounted small intestinal sections from C57BL/6 female mice (8-9 weeks old) in Ussing chambers and measured active ex vivo glucose transport via the change in short-circuit current (∆Isc ) induced by glucose. Tissue viability was confirmed by a positive ∆Isc response to 100 µM carbachol following each experiment. Active glucose transport, assessed after addition of 5, 10, 25 or 45 mM d-glucose to the mucosal chamber, was highest at 45 mM glucose in the distal jejunum compared to duodenum and ileum (P < 0.01). Incubation with the sodium-glucose cotransporter 1 (SGLT1) inhibitor phlorizin reduced active glucose transport in a dose-dependent manner in all regions (P < 0.01). Active glucose uptake induced by addition of 45 mM glucose to the mucosal chamber in the absence or presence of phlorizin was assessed in jejunum at each oestrous cycle stage (n = 9-10 mice per stage). Overall, active glucose uptake was lower at oestrus compared to pro-oestrus (P = 0.025). This study establishes an ex vivo method to measure region-specific glucose transport in the mouse small intestine. Our results provide the first direct evidence that SGLT1-mediated glucose transport in the jejunum changes across the ovarian cycle. The mechanisms underlying these adaptations in nutrient absorption remain to be elucidated.


Asunto(s)
Glucosa , Florizina , Humanos , Femenino , Animales , Ratones , Glucosa/metabolismo , Florizina/metabolismo , Ratones Endogámicos C57BL , Intestino Delgado/metabolismo , Yeyuno , Absorción Intestinal , Mucosa Intestinal/metabolismo
10.
J Am Soc Nephrol ; 33(10): 1857-1863, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985816

RESUMEN

BACKGROUND: Harmful glucose exposure and absorption remain major limitations of peritoneal dialysis (PD). We previously showed that inhibition of sodium glucose cotransporter 2 did not affect glucose transport during PD in rats. However, more recently, we found that phlorizin, a dual blocker of sodium glucose cotransporters 1 and 2, reduces glucose diffusion in PD. Therefore, either inhibiting sodium glucose cotransporter 1 or blocking facilitative glucose channels by phlorizin metabolite phloretin would reduce glucose transport in PD. METHODS: We tested a selective blocker of sodium glucose cotransporter 1, mizagliflozin, as well as phloretin, a nonselective blocker of facilitative glucose channels, in an anesthetized Sprague-Dawley rat model of PD. RESULTS: Intraperitoneal phloretin treatment reduced glucose absorption by >30% and resulted in a >50% higher ultrafiltration rate compared with control animals. Sodium removal and sodium clearances were similarly improved, whereas the amount of ultrafiltration per millimole of sodium removed did not differ. Mizagliflozin did not influence glucose transport or osmotic water transport. CONCLUSIONS: Taken together, our results and previous results indicate that blockers of facilitative glucose channels may be a promising target for reducing glucose absorption and improving ultrafiltration efficiency in PD.


Asunto(s)
Diálisis Peritoneal , Transportador 1 de Sodio-Glucosa , Ratas , Animales , Transportador 1 de Sodio-Glucosa/metabolismo , Soluciones para Diálisis/farmacología , Soluciones para Diálisis/metabolismo , Glucosa/metabolismo , Ratas Sprague-Dawley , Ultrafiltración , Floretina/farmacología , Floretina/metabolismo , Florizina/farmacología , Florizina/metabolismo , Diálisis Peritoneal/métodos , Transporte Biológico , Sodio/metabolismo , Peritoneo/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834020

RESUMEN

The eradication of cancer stem cells (CSCs) is vital to successful cancer treatment and overall disease-free survival. CSCs are a sub-population of cells within a tumor that are defined by their capacity for continuous self-renewal and recapitulation of new tumors, demonstrated in vitro through spheroid formation. Flavonoids are a group of phytochemicals with potent anti-oxidant and anti-cancer properties. This paper explores the impact of the flavonoid precursor phloridzin (PZ) linked to the ω-3 fatty acid docosahexaenoate (DHA) on the growth of MCF-7 and paclitaxel-resistant MDA-MB-231-TXL breast cancer cell lines. Spheroid formation assays, acid phosphatase assays, and Western blotting were performed using MCF-7 cells, and the cell viability assays, Annexin-V-488/propidium iodide (PI) staining, and 7-aminoactinomycin D (7-AAD) assays were performed using MDA-MB-231-TXL cells. PZ-DHA significantly reduced spheroid formation, as well as the metabolic activity of MCF-7 breast cancer cells in vitro. Treatment with PZ-DHA also suppressed the metabolic activity of MDA-MB-231-TXL cells and led to apoptosis. PZ-DHA did not have an observable effect on the expression of the drug efflux transporters ATP-binding cassette super-family G member 2 (ABCG2) and multidrug resistance-associated protein 1 (MRP1). PZ-DHA is a potential treatment avenue for chemo-resistant breast cancer and a possible novel CSC therapy. Future pre-clinical studies should explore PZ-DHA as a chemo-preventative agent.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/metabolismo , Paclitaxel/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Florizina/farmacología , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Transportadoras de Casetes de Unión a ATP/metabolismo , Células Madre Neoplásicas/metabolismo , Proliferación Celular
12.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770586

RESUMEN

Neuroinflammation is a hallmark of traumatic brain injury (TBI)'s acute and chronic phases. Despite the medical and scientific advances in recent years, there is still no effective treatment that mitigates the oxidative and inflammatory damage that affects neurons and glial cells. Therefore, searching for compounds with a broader spectrum of action that can regulate various inflammatory signaling pathways is of clinical interest. In this study, we determined not only the in vitro antioxidant capacity of apple pomace phenolics, namely, phlorizin and its metabolite, phloretin, but we also hypothesize that the use of these bioactive molecules may have potential use in TBI. We explored the antioxidant effects of both compounds in vitro (DPPH, iron-reducing capacity (IRC), and Folin-Ciocalteu reducing capacity (FCRC)), and using network pharmacology, we investigated the proteins involved in their protective effects in TBI. Our results showed that the antioxidant properties of phloretin were superior to those of phlorizin in the DPPH (12.95 vs. 3.52 mg ascorbic acid equivalent (AAE)/L), FCRC (86.73 vs. 73.69 mg gallic acid equivalent (GAE)/L), and iron-reducing capacity (1.15 vs. 0.88 mg GAE/L) assays. Next, we examined the molecular signature of both compounds and found 11 proteins in common to be regulated by them and involved in TBI. Meta-analysis and GO functional enrichment demonstrated their implication in matrix metalloproteinases, p53 signaling, and cell secretion/transport. Using MCODE and Pearson's correlation analysis, a subcluster was generated. We identified ESR1 (estrogen receptor alpha) as a critical cellular hub being regulated by both compounds and with potential therapeutic use in TBI. In conclusion, our study suggests that because of their vast antioxidant effects, probably acting on estrogen receptors, phloretin and phlorizin may be repurposed for TBI treatment due to their ease of obtaining and low cost.


Asunto(s)
Antioxidantes , Lesiones Traumáticas del Encéfalo , Humanos , Antioxidantes/metabolismo , Floretina/farmacología , Florizina/farmacología , Enfermedades Neuroinflamatorias , Farmacología en Red , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hierro
13.
Mol Imaging ; 2022: 4635171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903251

RESUMEN

Background: Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[18F]fluoro-D-glucopyranoside ([18F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. Methods: We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), or the SGLT-targeting agent, [18F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [18F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). Results: Serving as reference, intestinal administration of [18F]FDG led to slow absorption with retention of 89.2 ± 3.5% of administered radioactivity at 15 min. [18F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of 18.5 ± 1.2% (P < 0.0001). Intraintestinal phlorizin led to marked increase of [18F]Me4FDG uptake (15 min, 99.9 ± 4.7%; P < 0.0001 vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [18F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (%ID/g at 60 min, 0.42 ± 0.10 vs. untreated controls, 1.20 ± 0.03; P < 0.0001). Conclusion: As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [18F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [18F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Animales , Glucosa/metabolismo , Glucósidos , Florizina , Tomografía de Emisión de Positrones/métodos , Ratas , Sodio/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G331-G340, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916412

RESUMEN

A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.


Asunto(s)
Quilomicrones , Glucosa , Animales , Apolipoproteína B-48 , Quilomicrones/metabolismo , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacología , Glucosa/metabolismo , Linfa/metabolismo , Florizina/metabolismo , Florizina/farmacología , Ratas , Triglicéridos/metabolismo
15.
Biochem Biophys Res Commun ; 621: 176-182, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35841764

RESUMEN

We previously found that glucagon-like peptide 1 (GLP-1) secretion by co-administration of maltose plus an α-glucosidase inhibitor miglitol (maltose/miglitol) was suppressed by a GLUT2 inhibitor phloretin in mice. In addition, maltose/miglitol inhibited glucose-dependent insulinotropic polypeptide (GIP) secretion through a mechanism involving short chain fatty acids (SCFAs) produced by microbiome. However, it remains unknown whether phloretin suppresses GLP-1 secretion by modulating SCFAs. In this study, we examined the effect of phloretin on SCFA release from microbiome in vitro and in vivo. In Escherichia coli, acetate release into the medium was suppressed by phloretin, when cultured with maltose/miglitol. In mice, phloretin inhibited maltose/miglitol-induced SCFA increase in the portal vein. In addition, alpha methyl-d-glucose (αMDG), a poor substrate for GLUT2, significantly increased GLP-1 secretion when co-administered with phloridzin in mice, suggesting that GLUT2 is not essential for glucose/phloridzin-induced GLP-1 secretion. αMDG increased portal SCFA levels, thereby increasing GLP-1 secretion and suppressing GIP secretion in mice, suggesting that αMDG is metabolizable not for mammals, but for microbiota. In conclusion, phloretin is suggested to suppress maltose/miglitol-induced GLP-1 secretion via inhibiting SCFAs produced by microbiome.


Asunto(s)
Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón , Animales , Ácidos Grasos Volátiles , Polipéptido Inhibidor Gástrico , Glucosa , Maltosa , Mamíferos , Ratones , Floretina/farmacología , Florizina , Receptores Acoplados a Proteínas G
16.
Biol Reprod ; 106(6): 1206-1217, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35420639

RESUMEN

Glucose is a key substrate for supporting sperm energy production and function. Previous studies have demonstrated that sperm glucose uptake is facilitated by several isoforms of the glucose transporters (GLUT). Here, we report that sperm also expresses the Na+-dependent sodium glucose cotransporter (SGLT). This was first suggested by our observation that genetic deletion of the testis-specific Na,K-ATPase α4, which impairs the sperm plasma membrane Na+ gradient, reduces glucose uptake and ATP production. Immunoblot analysis revealed the presence of an SGLT in sperm, with specific expression of isoform 1 (SGLT-1), but not of isoform 2 (SGLT-2). Immunocytochemistry identified SGLT-1 in the mid- and principal piece of the sperm flagellum. Inhibition of SGLT-1 with the isotype-selective inhibitor phlorizin significantly reduced glucose uptake, glycolytic activity, and ATP production in noncapacitated and capacitated sperm from wild-type mice. Phlorizin also decreased total sperm motility, as well as other parameters of sperm movement. In contrast, inhibition of SGLT-1 had no significant effect on sperm hyperactivation, protein tyrosine phosphorylation, or acrosomal reaction. Importantly, phlorizin treatment impaired the fertilizing capacity of sperm. Altogether, these results demonstrate that mouse sperm express a functional SGLT transport system that is important for supporting sperm energy production, motility, and fertility.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Motilidad Espermática , Adenosina Trifosfato/metabolismo , Animales , Fertilidad , Glucosa/metabolismo , Masculino , Ratones , Florizina/metabolismo , Florizina/farmacología , Isoformas de Proteínas/metabolismo , Sodio/metabolismo , Sodio/farmacología , Transportador 1 de Sodio-Glucosa , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo
17.
J Exp Bot ; 73(3): 886-902, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34486649

RESUMEN

The high accumulation of phloridzin makes apple (Malus domestica) unique in the plant kingdom, which suggests a vital role of its biosynthesis in physiological processes. In our previous study, silencing MdUGT88F1 (a key UDP-GLUCOSE: PHLORETIN 2'-O-GLUCOSYLTRANSFERASE gene) revealed the importance of phloridzin biosynthesis in apple development and Valsa canker resistance. Here, results from MdUGT88F1-silenced lines showed that phloridzin biosynthesis was indispensable for normal chloroplast development and photosynthetic carbon fixation by maintaining MdGLK1/2 (GOLDEN2-like1/2) expression. Interestingly, increased phloridzin biosynthesis did not affect plant (or chloroplast) development, but reduced nitrogen accumulation, leading to chlorophyll deficiency, light sensitivity, and sugar accumulation in MdUGT88F1-overexpressing apple lines. Further analysis revealed that MdUGT88F1-mediated phloridzin biosynthesis negatively regulated the cytosolic glutamine synthetase1-asparagine synthetase-asparaginase (GS1-AS-ASPG) pathway of ammonium assimilation and limited chlorophyll synthesis in apple shoots. The interference of phloridzin biosynthesis in the GS1-AS-ASPG pathway was also assumed to be associated with its limitation of the carbon skeleton of ammonium assimilation through metabolic competition with the tricarboxylic acid cycle. Taken together, our findings shed light on the role of MdUGT88F1-mediated phloridzin biosynthesis in the coordination between carbon and nitrogen accumulation in apple trees.


Asunto(s)
Ascomicetos , Malus , Carbono/metabolismo , Malus/metabolismo , Nitrógeno/metabolismo , Florizina/metabolismo
18.
Pharmacol Res ; 186: 106524, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36349594

RESUMEN

BACKGROUND AND AIMS: Nephrolithiasis is a common renal disease with no effective medication. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, an anti-diabetic agent, have diuretic and anti-inflammatory properties and could prevent nephrolithiasis. Here, we investigated the potential of SGLT2 inhibition against nephrolithiasis using large-scale epidemiological data, animal models, and cell culture experiments. METHODS: This study included the data of diabetic patients (n = 1,538,198) available in the Japanese administrative database and divided them according to SGLT2 inhibitor prescription status. For animal experiments, renal calcium oxalate stones were induced by ethylene glycol in Sprague-Dawley rats, and phlorizin, an SGLT1/2 inhibitor, was used for the treatment. The effects of SGLT2-specific inhibition for renal stone formation were assessed in SGLT2-deficient mice and a human proximal tubular cell line, HK-2. RESULTS: Nephrolithiasis prevalence in diabetic men was significantly lower in the SGLT2 inhibitor prescription group than in the non-SGLT2 inhibitor prescription group. Phlorizin attenuated renal stone formation and downregulated the kidney injury molecule 1 (Kim1) and osteopontin (Opn) expression in rats, with unchanged water intake and urine volume. It suppressed inflammation and macrophage marker expression, suggesting the role of the SGLT2 inhibitor in reducing inflammation. SGLT2-deficient mice were resistant to glyoxylic acid-induced calcium oxalate stone formation with reduced Opn expression and renal damages. High glucose-induced upregulation of OPN and CD44 and cell surface adhesion of calcium oxalate reduced upon SGLT2-silencing in HK-2 cells. CONCLUSION: Overall, our findings identified that SGLT2 inhibition prevents renal stone formation and may be a promising therapeutic approach against nephrolithiasis.


Asunto(s)
Diabetes Mellitus , Cálculos Renales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Humanos , Ratas , Ratones , Animales , Oxalato de Calcio/metabolismo , Florizina , Ratas Sprague-Dawley , Cálculos Renales/tratamiento farmacológico , Cálculos Renales/prevención & control , Cálculos Renales/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Glucosa , Inflamación , Sodio
19.
Planta Med ; 88(13): 1190-1198, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34875697

RESUMEN

Phloridzin is a lead compound of the prestigious antidiabetic gliflozins. The present study found that phloridzin highly accumulated in Malus rockii Rehder. The content of phloridzin in M. rockii was the highest among wild plants, with the percentage of 15.54% in the dry leaves. The structure of phloridzin was revised by proton exchange experiments and extensive 2D NMR spectra. Phloridzin exhibited significant hypolipidemic activity in golden Syrian hamsters maybe by increasing the expression of CYP7A1, at the doses of 50 mg/kg and 200 mg/kg. The total performance of anti-hyperlipidemic effect of phloridzin may be superior to that of lovastatin, though lovastatin was more active than phloridzin. In addition, phloridzin exhibited moderate antimalarial activity with inhibition ratio of 31.3 ± 10.9% at a dose of 25 mg/kg/day, and showed moderate analgesic activity with 28.0% inhibition at a dose of 50 mg/kg.


Asunto(s)
Antimaláricos , Malus , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Florizina/farmacología , Florizina/química , Malus/química , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo , Protones , Lovastatina/metabolismo
20.
Chem Pharm Bull (Tokyo) ; 70(11): 805-811, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070932

RESUMEN

The protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 d treatment, blood and liver tissue were collected and analysed. The results revealed that PHL regulated liver function related indicators and reduced the pathological tissue damage, indicating that PHL significantly alleviated the liver injury. Furthermore, the level of CYP450 enzyme, the expression of CYP3A4, CYP2E1, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein were inhibited by PHL. These results indicated that PHL exerts a protecting effect against liver injury induced by combination of RFP and INH. The potential mechanisms may be concerned with the activation of Nrf2/HO-1 signaling pathway containing its key antioxidant enzymes and regulation of CYP3A4 and CYP2E1.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Isoniazida/metabolismo , Isoniazida/farmacología , Rifampin/metabolismo , Rifampin/farmacología , Florizina/metabolismo , Florizina/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacología , Citocromo P-450 CYP3A/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA