RESUMEN
Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.
Asunto(s)
Escherichia coli/metabolismo , Ingeniería Metabólica , Metanol/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico/genética , Variaciones en el Número de Copia de ADN , Evolución Molecular Dirigida , Escherichia coli/genética , Formaldehído/metabolismo , Glucólisis , Mutagénesis , Ribosamonofosfatos/metabolismoRESUMEN
Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP â PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.
Asunto(s)
Neuronas/metabolismo , Dolor/patología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Analgésicos Opioides/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Conducta Animal/efectos de los fármacos , Dieta , Conducta Alimentaria/efectos de los fármacos , Formaldehído/toxicidad , Glutamato Descarboxilasa/metabolismo , Locomoción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Neuronas/efectos de los fármacos , Dolor/etiología , Dolor/metabolismo , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de SeñalRESUMEN
Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.
Asunto(s)
Proteína BRCA2/genética , Aberraciones Cromosómicas/efectos de los fármacos , Formaldehído/toxicidad , Inestabilidad Genómica/efectos de los fármacos , Toxinas Biológicas/toxicidad , Daño del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Haploinsuficiencia , Células HeLa , Humanos , Proteína Homóloga de MRE11 , Proteoma , Ribonucleasa H/metabolismoRESUMEN
Throughout life, whether through external consumption or internal production, we are exposed to different reactive metabolites considered toxic to the body. Pham et al.1 uncover metabolic regulation by one such harmful metabolite: formaldehyde.
Asunto(s)
Formaldehído , Formaldehído/metabolismoRESUMEN
Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.
Asunto(s)
ARN , Ubiquitina-Proteína Ligasas , Humanos , ARN/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Formaldehído/toxicidad , Aldehídos/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Toxic DNA-protein crosslinks (DPCs) arise by ionizing irradiation and UV light, are particularly caused by endogenously produced reactive compounds such as formaldehyde, and also occur during compromised topoisomerase action. Although nucleotide excision repair and homologous recombination contribute to cell survival upon DPCs, hardly anything is known about mechanisms that target the protein component of DPCs directly. Here, we identify the metalloprotease Wss1 as being crucial for cell survival upon exposure to formaldehyde and topoisomerase 1-dependent DNA damage. Yeast mutants lacking Wss1 accumulate DPCs and exhibit gross chromosomal rearrangements. Notably, in vitro assays indicate that substrates such as topoisomerase 1 are processed by the metalloprotease directly and in a DNA-dependent manner. Thus, our data suggest that Wss1 contributes to survival of DPC-harboring cells by acting on DPCs proteolytically. We propose that DPC proteolysis enables repair of these unique lesions via downstream canonical DNA repair pathways.
Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Formaldehído , Sumoilación , Proteína que Contiene ValosinaRESUMEN
Plywood is widely used in construction, such as for flooring and interior walls, as well as in the manufacture of household items such as furniture and cabinets. Such items are made of wood veneers that are bonded together with adhesives such as urea-formaldehyde and phenol-formaldehyde resins1,2. Researchers in academia and industry have long aimed to synthesize lignin-phenol-formaldehyde resin adhesives using biomass-derived lignin, a phenolic polymer that can be used to substitute the petroleum-derived phenol3-6. However, lignin-phenol-formaldehyde resin adhesives are less attractive to plywood manufacturers than urea-formaldehyde and phenol-formaldehyde resins owing to their appearance and cost. Here we report a simple and practical strategy for preparing lignin-based wood adhesives from lignocellulosic biomass. Our strategy involves separation of uncondensed or slightly condensed lignins from biomass followed by direct application of a suspension of the lignin and water as an adhesive on wood veneers. Plywood products with superior performances could be prepared with such lignin adhesives at a wide range of hot-pressing temperatures, enabling the use of these adhesives as promising alternatives to traditional wood adhesives in different market segments. Mechanistic studies indicate that the adhesion mechanism of such lignin adhesives may involve softening of lignin by water, filling of vessels with softened lignin and crosslinking of lignins in adhesives with those in the cell wall.
Asunto(s)
Adhesivos , Lignina , Madera , Adhesivos/química , Formaldehído/química , Lignina/química , Fenoles/química , Urea/química , Agua/química , Madera/química , Biomasa , CalorRESUMEN
Two new studies in this issue of Molecular Cell demonstrate that bone marrow failure, in mice and humans, can be induced by formaldehyde generated either from defective metabolism (Dingler et al., 2020) or during the process of transcriptional reprogramming (Shen et al., 2020).
Asunto(s)
Aldehídos , Trastornos de Fallo de la Médula Ósea , Animales , Formaldehído/toxicidad , Humanos , RatonesRESUMEN
Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.
Asunto(s)
Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Formaldehído/sangre , Leucemia/genética , Adolescente , Aldehídos/sangre , Animales , Niño , Preescolar , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Formaldehído/toxicidad , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Leucemia/sangre , Leucemia/patología , Masculino , Ratones , Mutación/genética , Especificidad por SustratoRESUMEN
Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/genética , Anemia de Fanconi/genética , Formaldehído/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Anemia de Fanconi/sangre , Anemia de Fanconi/patología , Formaldehído/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Inestabilidad Genómica/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células K562 , Transcripción GenéticaRESUMEN
Recently, Pham et al. used an array of model systems to uncover a role for the enzyme methionine adenosyltransferase (MAT)-1A, which is mainly expressed in liver, in both sensing formaldehyde and regulating transcriptional responses that protect against it. This provides a new lens for understanding the effects of formaldehyde on gene regulation.
Asunto(s)
Epigénesis Genética , Formaldehído , Metionina Adenosiltransferasa , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Humanos , Carbono/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genéticaRESUMEN
Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription1-4. This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins5-7. However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance (Adh5-/-) and CSB (Csbm/m; Csb is also known as Ercc6) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5-/-Csbm/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food.
Asunto(s)
Síndrome de Cockayne , Daño del ADN , Formaldehído/efectos adversos , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Caquexia/complicaciones , Síndrome de Cockayne/inducido químicamente , Síndrome de Cockayne/complicaciones , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Enzimas Reparadoras del ADN/deficiencia , Modelos Animales de Enfermedad , Femenino , Formaldehído/metabolismo , Factor 15 de Diferenciación de Crecimiento/antagonistas & inhibidores , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Ratones , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , Insuficiencia Renal/complicaciones , Transcripción Genética/genéticaRESUMEN
Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.
Asunto(s)
Atmósfera/química , Butadienos/análisis , Butadienos/química , Mapeo Geográfico , Hemiterpenos/análisis , Hemiterpenos/química , Imágenes Satelitales , África , Australia , Brasil , Conjuntos de Datos como Asunto , El Niño Oscilación del Sur , Formaldehído/química , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Ciclo del Nitrógeno , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Oxidación-Reducción , Estaciones del Año , Sudeste de Estados UnidosRESUMEN
Formaldehyde (FA) is a recognized environmental and metabolic toxin implicated in cancer development and aging. Inherited mutations in the FA-detoxifying enzymes ADH5 and ALDH2 genes lead to FA overload in the severe multisystem AMeD syndrome. FA accumulation causes genome damage including DNA-protein-, inter- and intra-strand crosslinks and oxidative lesions. However, the influence of distinct DNA repair systems on organismal FA resistance remains elusive. We have here investigated the consequence of a range of DNA repair mutants in a model of endogenous FA overload generated by downregulating the orthologs of human ADH5 and ALDH2 in C. elegans. We have focused on the distinct components of nucleotide excision repair (NER) during developmental growth, reproduction and aging. Our results reveal three distinct modes of repair of FA-induced DNA damage: Transcription-coupled repair (TCR) operating NER-independently during developmental growth or through NER during adulthood, and, in concert with global-genome (GG-) NER, in the germline and early embryonic development. Additionally, we show that the Cockayne syndrome B (CSB) factor is involved in the resolution of FA-induced DNA-protein crosslinks, and that the antioxidant and FA quencher N-acetyl-l-cysteine (NAC) reverses the sensitivity of detoxification and DNA repair defects during development, suggesting a therapeutic intervention to revert FA-pathogenic consequences.
Asunto(s)
Envejecimiento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Daño del ADN , Reparación del ADN , Formaldehído , Reproducción , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Formaldehído/toxicidad , Animales , Reproducción/efectos de los fármacos , Reproducción/genética , Envejecimiento/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Mutación , Humanos , Transcripción Genética/efectos de los fármacos , Acetilcisteína/farmacología , Aldehído OxidorreductasasRESUMEN
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Asunto(s)
Proteoma , Sinapsis , Ratones , Masculino , Animales , Femenino , Proteoma/metabolismo , Sinapsis/fisiología , Células Piramidales/fisiología , Encéfalo/metabolismo , Formaldehído , Hipocampo/metabolismoRESUMEN
Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for >10 yr. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators to better understand epigenetic regulation in cancer and precision medicine.
Asunto(s)
Cromatina , Formaldehído , Cromatina/genética , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Humanos , Adhesión en Parafina/métodos , Fijación del Tejido/métodosRESUMEN
MicroRNA (miRNA) maturation is initiated by DROSHA, a double-stranded RNA (dsRNA)-specific RNase III enzyme. By cleaving primary miRNAs (pri-miRNAs) at specific positions, DROSHA serves as a main determinant of miRNA sequences and a highly selective gatekeeper for the canonical miRNA pathway. However, the sites of DROSHA-mediated processing have not been annotated, and it remains unclear to what extent DROSHA functions outside the miRNA pathway. Here, we establish a protocol termed "formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq)," which allows identification of DROSHA cleavage sites at single-nucleotide resolution. fCLIP identifies numerous processing sites, suggesting widespread end modifications during miRNA maturation. fCLIP also finds many pri-miRNAs that undergo alternative processing, yielding multiple miRNA isoforms. Moreover, we discovered dozens of DROSHA substrates on non-miRNA loci, which may serve as cis-elements for DROSHA-mediated gene regulation. We anticipate that fCLIP-seq could be a general tool for investigating interactions between dsRNA-binding proteins and structured RNAs.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Formaldehído/química , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , MicroARNs/química , MicroARNs/genética , Conformación de Ácido Nucleico , Unión Proteica , Interferencia de ARN , Ribonucleasa III/química , Ribonucleasa III/genética , Relación Estructura-Actividad , Especificidad por Sustrato , TransfecciónRESUMEN
The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/metabolismo , Factor 2 Relacionado con NF-E2 , Proteómica , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Biomarcadores de Tumor/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/uso terapéutico , FormaldehídoRESUMEN
In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.
Asunto(s)
Análisis de Secuencia de ADN , ADN/genética , ADN/análisis , Formaldehído , Adhesión en Parafina/métodos , Análisis de Secuencia de ADN/métodos , Fijación del Tejido/métodosRESUMEN
BACKGROUND: Pathologists commonly employ the Ki67 immunohistochemistry labelling index (LI) when deciding appropriate therapeutic strategies for patients with breast cancer. However, despite several attempts at standardizing the Ki67 LI, inter-observer and inter-laboratory bias remain problematic. We developed a flow cytometric assay that employed tissue dissociation, enzymatic treatment and a gating process to analyse Ki67 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue. RESULTS: We demonstrated that mechanical homogenizations combined with thrombin treatment can be used to recover efficiently intact single-cell nuclei from FFPE breast cancer tissue. Ki67 in the recovered cell nuclei retained reactivity against the MIB-1 antibody, which has been widely used in clinical settings. Additionally, since the method did not alter the nucleoskeletal structure of tissues, the nuclei of cancer cells can be enriched in data analysis based on differences in size and complexity of nuclei of lymphocytes and normal mammary cells. In a clinical study using the developed protocol, Ki67 positivity was correlated with the Ki67 LI obtained by hot spot analysis by a pathologist in Japan (rho = 0.756, P < 0.0001). The number of cancer cell nuclei subjected to the analysis in our assay was more than twice the number routinely checked by pathologists in clinical settings. CONCLUSIONS: The findings of this study showed the application of this new flow cytometry method could potentially be used to standardize Ki67 assessments in breast cancer.