RESUMEN
The dynamic changes in membrane phospholipids affect membrane biophysical properties and cell signaling, thereby influencing numerous biological processes. Nonspecific phospholipase C (NPC) enzymes hydrolyze common phospholipids to release diacylglycerol (DAG), which is converted to phosphatidic acid (PA) and other lipids. In this study, 2 Arabidopsis (Arabidopsis thaliana) tandemly arrayed genes, NPC3 and NPC4, were identified as critical factors modulating auxin-controlled plant growth and tropic responses. Moreover, NPC3 and NPC4 were shown to interact with the auxin efflux transporter PIN-FORMED2 (PIN2). The loss of NPC3 and NPC4 enhanced the endocytosis and vacuolar degradation of PIN2, which disrupted auxin gradients and slowed gravitropic and halotropic responses. Furthermore, auxin-triggered activation of NPC3 and NPC4 is required for the asymmetric PA distribution that controls PIN2 trafficking dynamics and auxin-dependent tropic responses. Collectively, our study reveals an NPC-derived PA signaling pathway in Arabidopsis auxin fluxes that is essential for fine-tuning the balance between root growth and environmental responses.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Fosfolipasas de Tipo C , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endocitosis , Gravitropismo , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatidicos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/genéticaRESUMEN
Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.
Asunto(s)
Betaína , Pseudomonas aeruginosa , Betaína/metabolismo , Pseudomonas aeruginosa/metabolismo , Esfingosina/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Ceramidasas/metabolismoRESUMEN
Target of rapamycin (TOR) forms two distinct complexes, TORC1 and TORC2, to exert its essential functions in cellular growth and homeostasis. TORC1 signaling is regulated in response to nutrients such as amino acids and glucose; however, the mechanisms underlying the activation of TORC2 signaling are still poorly understood compared to those for TORC1 signaling. In the budding yeast Saccharomyces cerevisiae, TORC2 targets the protein kinases Ypk1 and Ypk2 (hereafter Ypk1/2), and Pkc1 for phosphorylation. Plasma membrane stress is known to activate TORC2-Ypk1/2 signaling. We have previously reported that methylglyoxal (MG), a metabolite derived from glycolysis, activates TORC2-Pkc1 signaling. In this study, we found that MG activates the TORC2-Ypk1/2 and TORC2-Pkc1 signaling, and that phosphatidylserine is involved in the activation of both signaling pathways. We also demonstrated that the Rho family GTPase Cdc42 contributes to the plasma membrane stress-induced activation of TORC2-Ypk1/2 signaling. Furthermore, we revealed that phosphatidylinositol-specific phospholipase C, Plc1, contributes to the activation of both TORC2-Ypk1/2 and TORC2-Pkc1 signaling.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.
Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Enteritis , Variación Genética , Mastitis Bovina , Leche , Filogenia , Animales , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/clasificación , Clostridium perfringens/patogenicidad , Bovinos , Egipto , Femenino , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Leche/microbiología , Enteritis/microbiología , Enteritis/veterinaria , Mastitis Bovina/microbiología , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Fosfolipasas de Tipo C/genética , Industria Lechera , Granjas , Toxinas Bacterianas/genéticaRESUMEN
Phospholipase C (PLC) is an essential isozyme involved in the phosphoinositide signalling pathway, which maintains cellular homeostasis. Gain- and loss-of-function mutations in PLC affect enzymatic activity and are therefore associated with several disorders. Alternative splicing variants of PLC can interfere with complex signalling networks associated with oncogenic transformation and other diseases, including brain disorders. Cells and tissues with various mutations in PLC contribute different phosphoinositide signalling pathways and disease progression, however, identifying cryptic mutations in PLC remains challenging. Herein, we review both the mechanisms underlying PLC regulation of the phosphoinositide signalling pathway and the genetic variation of PLC in several brain disorders. In addition, we discuss the present challenges associated with the potential of deep-learning-based analysis for the identification of PLC mutations in brain disorders.
Asunto(s)
Encefalopatías , Aprendizaje Profundo , Humanos , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatidilinositoles/metabolismo , Mutación/genéticaRESUMEN
Possible segregation of plasma membrane (PM) phosphoinositide metabolism in membrane lipid domains is not fully understood. We exploited two differently lipidated peptide sequences, L10 and S15, to mark liquid-ordered, cholesterol-rich (Lo) and liquid-disordered, cholesterol-poor (Ld) domains of the PM, often called raft and nonraft domains, respectively. Imaging of the fluorescent labels verified that L10 segregated into cholesterol-rich Lo phases of cooled giant plasma-membrane vesicles (GPMVs), whereas S15 and the dye FAST DiI cosegregated into cholesterol-poor Ld phases. The fluorescent protein markers were used as Förster resonance energy transfer (FRET) pairs in intact cells. An increase of homologous FRET between L10 probes showed that depleting membrane cholesterol shrank Lo domains and enlarged Ld domains, whereas a decrease of L10 FRET showed that adding more cholesterol enlarged Lo and shrank Ld Heterologous FRET signals between the lipid domain probes and phosphoinositide marker proteins suggested that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and phosphatidylinositol 4-phosphate (PtdIns4P) are present in both Lo and Ld domains. In kinetic analysis, muscarinic-receptor-activated phospholipase C (PLC) depleted PtdIns(4,5)P2 and PtdIns4P more rapidly and produced diacylglycerol (DAG) more rapidly in Lo than in Ld Further, PtdIns(4,5)P2 was restored more rapidly in Lo than in Ld Thus destruction and restoration of PtdIns(4,5)P2 are faster in Lo than in Ld This suggests that Lo is enriched with both the receptor G protein/PLC pathway and the PtdIns/PI4-kinase/PtdIns4P pathway. The significant kinetic differences of lipid depletion and restoration also mean that exchange of lipids between these domains is much slower than free diffusion predicts.
Asunto(s)
Microdominios de Membrana/metabolismo , Péptidos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Transformada , Colesterol/metabolismo , Difusión , Diglicéridos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Cinética , Lipoilación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lípidos de la Membrana/metabolismo , Péptidos/genética , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Liposomas Unilamelares/metabolismoRESUMEN
BACKGROUND: Holoprosencephaly is a spectrum of developmental disorder of the embryonic forebrain in which there is failed or incomplete separation of the prosencephalon into two cerebral hemispheres. To date, dominant mutations in sonic hedgehog (SHH) pathway genes are the predominant Mendelian causes, and have marked interfamilial and intrafamilial phenotypical variabilities. METHODS: We describe two families in which offspring had holoprosencephaly spectrum and homozygous predicted-deleterious variants in phospholipase C eta-1 (PLCH1). Immunocytochemistry was used to examine the expression pattern of PLCH1 in human embryos. We used SHH as a marker of developmental stage and of early embryonic anatomy. RESULTS: In the first family, two siblings had congenital hydrocephalus, significant developmental delay and a monoventricle or fused thalami with a homozygous PLCH1 c.2065C>T, p.(Arg689*) variant. In the second family, two siblings had alobar holoprosencephaly and cyclopia with a homozygous PLCH1 c.4235delA, p.(Cys1079ValfsTer16) variant. All parents were healthy carriers, with no holoprosencephaly spectrum features. We found that the subcellular localisation of PLCH1 is cytoplasmic, but the p.(Cys1079ValfsTer16) variant was predominantly nuclear. Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome, all tissues producing or responding to SHH. Furthermore, the embryonic subcellular localisation of PLCH1 was exclusively cytoplasmic, supporting protein mislocalisation contributing to the pathogenicity of the p.(Cys1079ValfsTer16) variant. CONCLUSION: Our data support the contention that PLCH1 has a role in prenatal mammalian neurodevelopment, and deleterious variants cause a clinically variable holoprosencephaly spectrum phenotype.
Asunto(s)
Holoprosencefalia , Fosfolipasas de Tipo C , Animales , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Holoprosencefalia/metabolismo , Humanos , Mamíferos/metabolismo , Mutación , Fenotipo , Fosfolipasas de Tipo C/genéticaRESUMEN
Recently, phosphatidylglycerol (PG) focused on its important role in chloroplast photosynthesis, mitochondrial function of the sperm, an inhibitory effect on SARS-CoV-2 ability to infect naïve cells, and reducing lung inflammation caused by coronavirus disease 2019. To develop an enzymatic PG determination method as the high-throughput analysis of PG, a PG-specific phospholipase C (PG-PLC) was found in the culture supernatant of Amycolatopsis sp. NT115. PG-PLC (54 kDa by SDS-PAGE) achieved the maximal activity at pH 6.0 and 55 °C and was inhibited by detergents, such as Briji35, Tween 80, and sodium cholate, but not by EDTA and metal ions, except for Zn2+. The open reading frame of the PG-PLC gene consisted of 1620 bp encoding 515-amino-acid residues containing the preceding 25-amino-acid residues (Tat signal peptide sequence). The putative amino acid sequence of PG-PLC was highly similar to those of metallophosphoesterases; however, its substrate specificity was completely different from those of known PLCs.
Asunto(s)
COVID-19 , Fosfolipasas de Tipo C , Masculino , Humanos , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Amycolatopsis/genética , Amycolatopsis/metabolismo , Fosfatidilgliceroles , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Semen , Clonación Molecular , Señales de Clasificación de Proteína/genéticaRESUMEN
Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.
Asunto(s)
Endoftalmitis , Listeria monocytogenes , Humanos , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatidilinositol Diacilglicerol-Liasa/genética , Fosfatidilinositol Diacilglicerol-Liasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Supervivencia Celular , Células Ependimogliales/metabolismo , Fagocitos/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
Many studies have confirmed the enzymatic activity of a mammalian phosphatidylcholine (PC) phospholipase C (PLC) (PC-PLC), which produces diacylglycerol (DAG) and phosphocholine through the hydrolysis of PC in the absence of ceramide. However, the protein(s) responsible for this activity have never yet been identified. Based on the fact that tricyclodecan-9-yl-potassium xanthate can inhibit both PC-PLC and sphingomyelin synthase (SMS) activities, and SMS1 and SMS2 have a conserved catalytic domain that could mediate a nucleophilic attack on the phosphodiester bond of PC, we hypothesized that both SMS1 and SMS2 might have PC-PLC activity. In the present study, we found that purified recombinant SMS1 and SMS2 but not SMS-related protein have PC-PLC activity. Moreover, we prepared liver-specific Sms1/global Sms2 double-KO mice. We found that liver PC-PLC activity was significantly reduced and steady-state levels of PC and DAG in the liver were regulated by the deficiency, in comparison with control mice. Using adenovirus, we expressed Sms1 and Sms2 genes in the liver of the double-KO mice, respectively, and found that expressed SMS1 and SMS2 can hydrolyze PC to produce DAG and phosphocholine. Thus, SMS1 and SMS2 exhibit PC-PLC activity in vitro and in vivo.
Asunto(s)
Hígado/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Fosfolipasas de Tipo C , Animales , Células COS , Chlorocebus aethiops , Ratones , Ratones Noqueados , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Dominios Proteicos , Proteínas Recombinantes , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.
Asunto(s)
Brassica napus/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfatos/farmacología , Proteínas de Plantas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Acilación , Membrana Celular/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , Fosfatos/administración & dosificación , Proteínas de Plantas/genética , Fosfolipasas de Tipo C/genéticaRESUMEN
ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.
Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fumonisinas/metabolismo , Fosfolipasas/metabolismo , Transducción de Señal , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Muerte Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Peroxidasas/genética , Peroxidasas/metabolismo , Fosfolipasas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Estrés Fisiológico , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
MAIN CONCLUSION: Preferential expression of OsPLC1 is detected at the heading stage of rice, OsPLC1 overexpression results in early flowering, increased-grain size and yield; however, opposing phenotypes produced in the osplc1 mutants. Abstract: The importance of phospholipase C (PLC) in plant development has been demonstrated in several studies. OsPLC1, a member of PI-PLC in rice, although its role in the response to salt stress of rice seedlings has been reported, its functions in the growth and development of rice is elusive. Here, we report that OsPLC1 expression could be detectable in various tissues throughout the developmental stages of rice, and the highest expression level of OsPLC1 was detected at the heading stage. OsPLC1 overexpression (OE) produced rice plants with early flowering, whereas OsPLC1 loss-of-function led to delay in flowering. The expression levels of subset genes, which are involved in the control of flowering time in rice, were altered in the plants of OE and osplc1. In addition, the enlargement of grain size was observed in OE plants, however, the reduction of grain size was noticed in osplc1 mutants. The increase in the grain size and the grain yield of OE lines were associated with the improvement of cell length and expression levels of a set of genes related to cell expansion, contrarily, the decrease in osplc1 mutant grain size and yield were linked to declined cell length and expression levels of related genes. No significant differences, in terms of the grain quality of mature seeds, were found in OE and osplc1 mutants, with compared to those in Nipponbare (Nip). In summary, our study suggests that OsPLC1 could modulate rice flowering time and grain size.
Asunto(s)
Oryza , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
Association of G protein-coupled receptors into heterodimeric complexes has been reported for over 50 receptor pairs in vitro but functional in vivo validation remains a challenge. Our recent in vitro studies defined the functional fingerprint of heteromers composed of Gi -coupled melatonin MT2 receptors and Gq -coupled serotonin 5-HT2C receptors, in which melatonin transactivates phospholipase C (PLC) through 5-HT2C . Here, we identified this functional fingerprint in the mouse brain. Gq protein activation was probed by [35 S]GTPγS incorporation followed by Gq immunoprecipitation, and PLC activation by determining the inositol phosphate levels in brain lysates of animals previously treated with melatonin. Melatonin concentration-dependently activated Gq proteins and PLC in the hypothalamus and cerebellum but not in cortex. These effects were inhibited by the 5-HT2C receptor-specific inverse agonist SB-243213, and were absent in MT2 and 5-HT2C knockout mice, fully recapitulating previous in vitro data and indicating the involvement of MT2 /5-HT2C heteromers. The antidepressant agomelatine had a similar effect than melatonin when applied alone but blocked the melatonin-promoted Gq activation due to its 5-HT2C antagonistic component. Collectively, we provide strong functional evidence for the existence of MT2 /5-HT2C heteromeric complexes in mouse brain. These heteromers might participate in the in vivo effects of agomelatine.
Asunto(s)
Encéfalo/metabolismo , Regulación Enzimológica de la Expresión Génica , Multimerización de Proteína , Receptor de Melatonina MT2/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Activación Transcripcional , Fosfolipasas de Tipo C/biosíntesis , Acetamidas/farmacología , Animales , Indoles/farmacología , Masculino , Ratones , Ratones Noqueados , Piridinas/farmacología , Receptor de Melatonina MT2/genética , Receptor de Serotonina 5-HT2C/genética , Fosfolipasas de Tipo C/genéticaRESUMEN
AIMS: Phospholipase C (PLC) is a hydrolase involved in signal transduction in eukaryotic cells. This study aimed to understand the function of PLC in the nematode-trapping fungus Arthrobotrys oligospora. METHODS AND RESULTS: Orthologous PLC (AoPLC2) of A. oligospora was functionally analysed using gene disruption and multi-phenotypic analysis. Disrupting Aoplc2 caused a deformation of partial hyphal cells (about 10%) and conidia (about 50%), decreased the number of nuclei in both conidia and hyphal cells, and increased the accumulation of lipid droplets. Meanwhile, the sporulation-related genes fluG and abaA were downregulated in ΔAoplc2 mutants than in the wild-type strain. Moreover, ΔAoplc2 mutants were more sensitive to osmotic stressors. Importantly, the number of traps, electron-dense bodies in traps, and nematicidal activity of ΔAoplc2 mutants were reduced, and the shape of the traps was deformed. In addition, AoPLC2 was involved in the biosynthesis of secondary metabolites in A. oligospora. CONCLUSIONS: AoPLC2 plays an important role in the development of hyphae, spores, and cell nuclei, responses to stress, formation of traps, and predation of nematodes in A. oligospora. SIGNIFICANCE AND IMPACT OF STUDY: This study reveals the various functions of phospholipase C and elucidates the regulation of trap morphogenesis in nematode-trapping fungi.
Asunto(s)
Ascomicetos , Nematodos , Fosfolipasas de Tipo C , Animales , Ascomicetos/enzimología , Ascomicetos/genética , Morfogénesis , Nematodos/microbiología , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Virulencia/genéticaRESUMEN
The implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids. This enzymatic method reduces the gums' volume and increases the overall oil yield. A thermostable phospholipase would be highly advantageous for industrial oil degumming as oil treatment at higher temperatures would save energy and increase the recovery of oil by facilitating the mixing and gums removal. A thermostable phosphatidylcholine (PC) (and phosphatidylethanolamine (PE))-specific phospholipase C from Thermococcus kodakarensis (TkPLC) was studied and completely removed PC and PE from crude soybean oil at 80 °C. Due to these characteristics, TkPLC is an interesting promising candidate for industrial-scale enzymatic oil degumming at high temperatures. KEY POINTS: ⢠A thermostable phospholipase C from T. kodakarensis (TkPLC) has been identified. ⢠TkPLC was recombinantly produced in Pichia pastoris and successfully purified. ⢠TkPLC completely hydrolyzed PC and PE in soybean oil degumming assays at 80 °C.
Asunto(s)
Aceite de Soja , Fosfolipasas de Tipo C , Lecitinas , Fosfolipasas , Fosfolípidos , Aceite de Soja/química , Fosfolipasas de Tipo C/genéticaRESUMEN
Fungal pathogens use plant surface physiochemical signals to trigger specific developmental processes. To assess the role of phospholipase C (PLC) in mediating plant stimuli sensing of Alternaria alternata, the function of three PLC genes was characterized by constructing ΔAaPLC mutants. Here we showed that fruit wax-coated surfaces significantly induced appressorium formation in A. alternata and mutants. Germination of ΔAaPLC mutants did not differ from the wild type. Deletion of AaPLC1 led to the decrease of appressorium formation and infected hyphae, but the degree of reduction varies between the different types of waxes, with the strongest response to pear wax. Appressorium formation and infected hyphae of the ΔAaPLC1 mutant on dewaxed onion epidermis mounted with pear wax (θ4) were reduced by 14.5 and 65.7% after 8 h incubation, while ΔAaPLC2 and ΔAaPLC3 formed the same infection hyphae as wild type. In addition, AaPLC1 mutation caused pleiotropic effects on fungal biological function, including growth deficiency, changes in stress tolerance, weakening of pathogenicity to the host, as well as destruction of mycotoxin synthesis. Both AaPLC2 and AaPLC3 genes were found to have some effects on stress response and mycotoxin production. Taken together, AaPLC genes differentially regulate the growth, stress response, pathogenicity, and secondary metabolism of A. alternata.
Asunto(s)
Micotoxinas , Pyrus , Alternaria/genética , Frutas , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Metabolismo Secundario , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Virulencia , Ceras/metabolismoRESUMEN
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCß3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCß3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCß3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Asunto(s)
Bronquios/metabolismo , Cloruros/metabolismo , Células Epiteliales/metabolismo , Potenciales de la Membrana , Fosfolipasas de Tipo C/metabolismo , Bronquios/citología , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/citología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfolipasas de Tipo C/genéticaRESUMEN
Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. The underlying mechanisms of phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in mesocotyl elongation. Our results indicated that all five OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls compared to those of Nipponbare and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without gibberellic acid (GA)3, it was obviously elongated by treatment with GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of GA signaling, was drastically increased in OE plants; by contrast, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of PCho in rice.
Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Mutación , Oryza/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosforilcolina/metabolismo , Células Vegetales , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Fosfolipasas de Tipo C/genéticaRESUMEN
Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.