Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 84(10): 2113-2120, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32640867

RESUMEN

Small molecules that regulate cell stemness have the potential to make a major contribution to regenerative medicine. In the course of screening for small molecules that affect stemness in mouse embryonic stem cells (mESCs), we discovered that NPD13432, an aurone derivative, promoted self-renewal of mESCs. Normally, mESCs start to differentiate upon withdrawal of 2i/LIF. However, cells treated with the compound continued to express endogenous Nanog, a pluripotency marker protein essential for sustaining the undifferentiated state, even in the absence of 2i/LIF. Biochemical characterization revealed that NPD13432 inhibited GSK3α and GSK3ß with IC50 values of 92 nM and 310 nM, respectively, suggesting that the compound promotes self-renewal in mESCs by inhibiting GSK3. The chemical structure of the compound is unique among known molecules with this activity, providing an opportunity to develop new inhibitors of GSK3, as well as chemical tools for investigating cell stemness.


Asunto(s)
Autorrenovación de las Células/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Unión Competitiva , Línea Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glucógeno Sintasa/química , Glucógeno Sintasa/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica
2.
Mol Cell Neurosci ; 95: 51-58, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30660767

RESUMEN

The ventromedial hypothalamic nucleus (VMN) is a critical component of the neural circuitry that regulates glucostasis. Astrocyte glycogen is a vital reserve of glucose and its oxidizable metabolite L-lactate. In hypoglycemic female rats, estradiol-dependent augmentation of VMN glycogen phosphorylase (GP) protein requires hindbrain catecholamine input. Research here investigated the premise that norepinephrine (NE) regulation of VMN astrocyte metabolism shapes local glucoregulatory neurotransmitter signaling in this sex. Estradiol-implanted ovariectomized rats were pretreated by intra-VMN administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxy-cinnamic acid (4CIN) or vehicle before NE delivery to that site. NE caused 4CIN-reversible reduction or augmentation of VMN glycogen synthase and phosphorylase expression. 4CIN prevented NE stimulation of gluco-inhibitory (glutamate decarboxylase65/67) and suppression of gluco-stimulatory (neuronal nitric oxide synthase) neuron marker proteins. These outcomes imply that effects of noradrenergic stimulation of VMN astrocyte glycogen depletion on glucoregulatory transmitter signaling may be mediated, in part, by glycogen-derived substrate fuel provision. NE control of astrocyte glycogen metabolism may involve down-regulated adrenoreceptor (AR), e.g. alpha1 and alpha2, alongside amplified beta1 AR and estrogen receptor-beta signaling. Noradrenergic hypoglycemia was refractory to 4CIN, implying that additional NE-sensitive VMN glucoregulatory neurochemicals may be insensitive to monocarboxylate uptake. Augmentation of circulating free fatty acids by combinatory NE and 4CIN, but not NE alone implies that acute hypoglycemia induced here is an insufficient stimulus for mobilization of these fuels, but is adequate when paired with diminished brain monocarboxylate fuel availability.


Asunto(s)
Glucosa/metabolismo , Glucógeno/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Norepinefrina/farmacología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Astrocitos/metabolismo , Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/farmacología , Receptor beta de Estrógeno/metabolismo , Estrógenos/deficiencia , Ácidos Grasos/metabolismo , Femenino , Glucógeno Sintasa/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Núcleo Hipotalámico Ventromedial/citología
3.
Org Biomol Chem ; 14(38): 9105-9113, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27714243

RESUMEN

Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.


Asunto(s)
Arabinosa/química , Arabinosa/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucógeno/metabolismo , Iminofuranosas/química , Iminofuranosas/farmacología , Alcoholes del Azúcar/química , Alcoholes del Azúcar/farmacología , Animales , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/metabolismo , Simulación del Acoplamiento Molecular , Ratas , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/enzimología , Solanum tuberosum/metabolismo
4.
Org Biomol Chem ; 13(26): 7282-8, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26055498

RESUMEN

Glycogen is a polymer of α-1,4- and α-1,6-linked glucose units that provides a readily available source of energy in living organisms. Glycogen synthase (GS) and glycogen phosphorylase (GP) are the two enzymes that control, respectively, the synthesis and degradation of this polysaccharide and constitute adequate pharmacological targets to modulate cellular glycogen levels, by means of inhibition of their catalytic activity. Here we report on the synthesis and biological evaluation of a selective inhibitor that consists of an azobenzene moiety glycosidically linked to the anomeric carbon of a glucose molecule. In the ground state, the more stable (E)-isomer of the azobenzene glucoside had a slight inhibitory effect on rat muscle GP (RMGP, IC50 = 4.9 mM) and Escherichia coli GS (EcGS, IC50 = 1.6 mM). After irradiation and subsequent conversion to the (Z)-form, the inhibitory potency of the azobenzene glucoside did not significantly change for RMGP (IC50 = 2.4 mM), while its effect on EcGS increased 50-fold (IC50 = 32 µM). Sucrose synthase 4 from potatoes, a glycosyltransferase that does not operate on glycogen, was only slightly inhibited by the (E)-isomer (IC50 = 0.73 mM). These findings could be rationalized on the basis of kinetic and computer-aided docking analysis, which indicated that both isomers of the azobenzene glucoside mimic the EcGS acceptor substrate and exert their inhibitory effect by binding to the glycogen subsite in the active center of the enzyme. The ability to selectively photoregulate the catalytic activity of key enzymes of glycogen metabolism may represent a new approach for the treatment of glycogen metabolism disorders.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/metabolismo , Glucógeno/metabolismo , Procesos Fotoquímicos , Animales , Compuestos Azo/química , Compuestos Azo/metabolismo , Compuestos Azo/farmacología , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/enzimología , Glucósidos/química , Glucógeno Fosforilasa/química , Glucógeno Sintasa/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica , Ratas , Estereoisomerismo
5.
Int J Mol Sci ; 15(10): 17827-37, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25279585

RESUMEN

Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.


Asunto(s)
Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Insulina/farmacología , Células 3T3-L1 , Animales , Transporte Biológico/efectos de los fármacos , Técnicas Biosensibles , Activación Enzimática/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Glucosa/análisis , Glucógeno Sintasa/antagonistas & inhibidores , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Nanotecnología
6.
J Neurochem ; 127(1): 101-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23607684

RESUMEN

Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.1.18) expression using lentiviruses harboring short hairpin RNA (shRNA). GBE1 suppression in embryonic cortical neurons led to polyglucosan accumulation and associated apoptosis, which were reversible by rapamycin or starvation treatments. Further analysis revealed that rapamycin and starvation led to phosphorylation and inactivation of glycogen synthase (GS, EC 2.4.1.11), dephosphorylated and activated in the GBE1-suppressed neurons. These protective effects of rapamycin and starvation were reversed by overexpression of phosphorylation site mutant GS only if its glycogen binding site was intact. While rapamycin and starvation induce autophagy, autophagic maturation was not required for their corrective effects, which prevailed even if autophagic flux was inhibited by vinblastine. Furthermore, polyglucosans were not observed in any compartment along the autophagic pathway. Our data suggest that glycogen branching enzyme repression in glycogenoses can cause pathogenic polyglucosan buildup, which might be corrected by GS inhibition.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/efectos de los fármacos , Glucanos/toxicidad , Glucógeno Sintasa/antagonistas & inhibidores , Síndromes de Neurotoxicidad/enzimología , Síndromes de Neurotoxicidad/prevención & control , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Adenosina Trifosfato/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Inhibidores Enzimáticos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Microscopía Fluorescente , Síndromes de Neurotoxicidad/genética , Fosforilación , Cultivo Primario de Células , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Inanición/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Transducción Genética
7.
FASEB J ; 26(8): 3140-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22532441

RESUMEN

Corneal epithelium relies on abundant glycogen stores as its primary energy source. MicroRNA-31 (miR-31), a corneal epithelial-preferred miRNA, negatively regulates factor inhibiting hypoxia-inducible factor-1 (FIH-1). Since HIF-1α is involved in anaerobic energy production, we investigated the role that miR-31 and FIH-1 play in regulating corneal epithelial glycogen. We used antagomirs (antago) to reduce the level of miR-31 in primary human corneal epithelial keratinocytes (HCEKs), and a miR-31-resistant FIH-1 to increase FIH-1 levels. Antago-31 raised FIH-1 levels and significantly reduced glycogen stores in HCEKs compared to irrelevant-antago treatment. Similarly, HCEKs retrovirally transduced with a miR-31-resistant FIH-1 had markedly reduced glycogen levels compared with empty vector controls. In addition, we observed no change in a HIF-1α reporter or known genes downstream of HIF-1α indicating that the action of FIH-1 and miR-31 on glycogen is HIF-1α-independent. An enzyme-dead FIH-1 mutation failed to restore glycogen stores, indicating that FIH-1 negatively regulates glycogen in a hydroxylase-independent manner. FIH-1 overexpression in HCEKs decreased AKT signaling, activated GSK-3ß, and inactivated glycogen synthase. Treatment of FIH-1-transduced HCEKs with either a myristolated Akt or a GSK-3ß inhibitor restored glycogen stores, confirming the direct involvement of Akt/GSK-3ß signaling. Silencing FIH-1 in HCEKs reversed the observed changes in Akt-signaling. Glycogen regulation in a HIF-1α-independent manner is a novel function for FIH-1 and provides new insight into how the corneal epithelium regulates its energy requirements.


Asunto(s)
Epitelio Corneal/metabolismo , Glucógeno/metabolismo , Queratinocitos/metabolismo , MicroARNs/fisiología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Animales , Células Cultivadas , Epitelio Corneal/efectos de los fármacos , Femenino , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Queratinocitos/efectos de los fármacos , Ratones , Oxigenasas de Función Mixta/metabolismo , Oligorribonucleótidos/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Bioorg Med Chem Lett ; 23(10): 2936-40, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23582275

RESUMEN

Glycogen synthase (GS) catalyzes the transfer of glucose residues from UDP-glucose to a glycogen polymer chain, a critical step for glucose storage. Patients with type 2 diabetes normally exhibit low glycogen levels and decreased muscle glucose uptake is the major defect in whole body glucose disposal. Therefore, activating GS may provide a potential approach for the treatment of type 2 diabetes. In order to identify non-carboxylic acids GS activators, we designed and synthesized a series of 2-N-alkyl- and 2-N-aryl-indazolone derivatives and studied their activity in activating human GS.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa/antagonistas & inhibidores , Indazoles/farmacología , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/síntesis química , Glucógeno Sintasa/metabolismo , Indazoles/administración & dosificación , Indazoles/síntesis química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad
9.
Hum Mol Genet ; 17(24): 3876-86, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18782850

RESUMEN

Glycogen storage disease type II (GSDII) or Pompe disease is an autosomal recessive disorder caused by defects in the acid alpha-glucosidase gene, which leads to lysosomal glycogen accumulation and enlargement of the lysosomes mainly in cardiac and muscle tissues, resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severely affected patients. Enzyme replacement therapy has already proven to be beneficial in this disease, but correction of pathology in skeletal muscle still remains a challenge. As substrate deprivation was successfully used to improve the phenotype in other lysosomal storage disorders, we explore here a novel therapeutic approach for GSDII based on a modulation of muscle glycogen synthesis. Short hairpin ribonucleic acids (shRNAs) targeted to the two major enzymes involved in glycogen synthesis, i.e. glycogenin (shGYG) and glycogen synthase (shGYS), were selected. C2C12 cells and primary myoblasts from GSDII mice were stably transduced with lentiviral vectors expressing both the shRNAs and the enhanced green fluorescent protein (EGFP) reporter gene. Efficient and specific inhibition of GYG and GYS was associated not only with a decrease in cytoplasmic and lysosomal glycogen accumulation in transduced cells, but also with a strong reduction in the lysosomal size, as demonstrated by confocal microscopy analysis. A single intramuscular injection of recombinant AAV-1 (adeno-associated virus-1) vectors expressing shGYS into newborn GSDII mice led to a significant reduction in glycogen accumulation, demonstrating the in vivo therapeutic efficiency. These data offer new perspectives for the treatment of GSDII and could be relevant to other muscle glycogenoses.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno/biosíntesis , Glucógeno/genética , Interferencia de ARN/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/genética , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Humanos , Ratones , Ratones Noqueados
10.
Mol Cell Biochem ; 341(1-2): 73-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20333445

RESUMEN

Within the liver, hormonal control of glycogen metabolism allows for rapid release and uptake of glucose from the circulation, providing a reserve of glucose that can be utilised by other organs. Traditionally, cellular glycogen storage has been detected using Periodic acid Schiff (PAS) staining of histopathology samples or a biochemical assay. Colorimetric measurement of glycogen content using PAS staining is hard to quantify whilst biochemical techniques give limited information about events such as cytotoxicity or allow analysis of hepatic heterogeneity. Here, we describe the development of an imaging based method to quantify glycogen storage in 96-well cultures of primary rat hepatocytes using the inherent fluorescence properties of the Schiff reagent. PAS-stained hepatocytes were imaged using an automated fluorescent microscope, with the amount of glycogen present in each cell being quantified. Using this technique, we found an increase in glycogen storage in response to insulin (EC50 = 0.31 nM) that was in agreement with that determined using biochemical quantification (EC50 = 0.32 nM). Furthermore, a dose dependent increase in glycogen storage was also seen in response to glycogen synthase kinase inhibitors and glycogen phosphorylase inhibitors. This technique allows rapid assessment of cellular glycogen storage in response to hormones and small molecule inhibitors.


Asunto(s)
Diagnóstico por Imagen/métodos , Glucógeno/metabolismo , Hepatocitos/metabolismo , Análisis por Micromatrices/métodos , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Sintasa/antagonistas & inhibidores , Hepatocitos/citología , Insulina/farmacología , Métodos , Microscopía Fluorescente , Ratas , Bases de Schiff
11.
J Med Chem ; 63(7): 3538-3551, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32134266

RESUMEN

The overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure-activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.


Asunto(s)
Inhibidores Enzimáticos/química , Glucógeno Sintasa/antagonistas & inhibidores , Imidazoles/química , Pirazoles/química , Animales , Caenorhabditis elegans/enzimología , Cristalografía por Rayos X , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Glucógeno Sintasa/química , Glucógeno Sintasa/metabolismo , Células HEK293 , Humanos , Imidazoles/síntesis química , Imidazoles/metabolismo , Cinética , Estructura Molecular , Unión Proteica , Pirazoles/síntesis química , Pirazoles/metabolismo , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
12.
Biochim Biophys Acta ; 1179(3): 271-6, 1993 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-8218371

RESUMEN

The effects of the phosphatase inhibitors calyculin A and okadaic acid were investigated to determine the roles of protein phosphatases type 1 and 2A in the regulation of the activities of glycogen synthase and phosphorylase by glucose in a primary culture of hepatocytes. Glycogen synthesis, as measured by the incorporation of labelled glucose into glycogen, was inhibited in a dose-dependent manner by calyculin A (IC50 = 2.2 nM) and okadaic acid with (IC50 = 14 nM). Glucose-induced activation of glycogen synthase was inhibited by calyculin A and okadaic acid with IC50 values of 3.7 nM and 90 nM, respectively. Phosphorylase was simultaneously activated by these inhibitors with calyculin A again being more active (P < 0.001) than okadaic acid. The differing potencies (P < 0.001) of these inhibitors on the activities of glycogen synthase and phosphorylase were also observed with varying concentrations of glucose (5.6-60 mM) in the medium and at different incubation periods upto 120 min. It has been previously shown that both inhibitors inhibit protein phosphatase-2A with equal potency and calyculin A is a more potent inhibitor of protein phosphatase-1 than okadaic acid. Heat- and proteinase-treated cytosolic fractions from hepatocytes incubated with calyculin A and okadaic acid showed similar differential inhibitory activities towards purified types 1 and 2-A protein phosphatases. Hence, these data provide further evidence that protein phosphatase type-1 plays a major role in the control of glycogen synthesis by regulating the activities of glycogen synthase and phosphorylase.


Asunto(s)
Éteres Cíclicos/farmacología , Glucógeno Sintasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Oxazoles/farmacología , Fosforilasas/antagonistas & inhibidores , Animales , Células Cultivadas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Glucógeno/biosíntesis , Masculino , Toxinas Marinas , Ácido Ocadaico , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
13.
Biochim Biophys Acta ; 1207(1): 88-92, 1994 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-8043614

RESUMEN

Cyclic AMP-dependent protein kinase phosphorylates and inactivates glycogen synthase. In the absence of cyclic AMP, glycogen synthase is able to partially activate cyclic AMP-dependent protein kinase, probably by inducing the dissociation of the catalytic and regulatory subunits. The activation of cyclic AMP-dependent protein kinase by glycogen synthase is greatly reduced by the addition of low, physiological concentrations of the allosteric activator of glycogen synthase, glucose 6-phosphate. This effect appears to be specific for both glycogen synthase as substrate of the kinase and for cyclic AMP-dependent protein kinase as glycogen synthase phosphorylating enzyme. The result is an apparent, although not real effect of glucose 6-phosphate as an inhibitor competing with cyclic AMP. The reported inhibition by insulin of the activity of cyclic AMP-dependent protein kinase in skeletal muscle may be explained by the increased intracellular levels of glucose 6-phosphate resulting from the action of the hormone on glucose transport.


Asunto(s)
Glucofosfatos/farmacología , Glucógeno Sintasa/metabolismo , Inhibidores de Proteínas Quinasas , Animales , AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Glucosa-6-Fosfato , Glucógeno Sintasa/antagonistas & inhibidores , Músculos/enzimología , Fosforilación/efectos de los fármacos , Proteínas Quinasas/aislamiento & purificación , Conejos
14.
Diabetes ; 51(2): 284-92, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11812734

RESUMEN

5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose transport) by AICA-riboside in resting muscle is not known. Thus, we have altered muscle glycogen levels in rats by a combination of swimming exercise and diet and investigated the effects of AICA-riboside in the perfused rat hindlimb muscle. Two groups of rats, one with super-compensated muscle glycogen content (approximately 200-300% of normal; high glycogen [HG]) and one with moderately lowered muscle glycogen content (approximately 80% of normal; low glycogen [LG]), were generated. In both groups, the degree of activation of the alpha2 isoform of AMPK by AICA-riboside depended on muscle type (white gastrocnemius >> red gastrocnemius > soleus). Basal and AICA-riboside-induced alpha2-AMPK activity were markedly lowered in the HG group (approximately 50%) compared with the LG group. Muscle 2-deoxyglucose uptake was also increased and glycogen synthase activity decreased by AICA-riboside. Especially in white gastrocnemius, these effects, as well as the absolute activity levels of AMPK-alpha2, were markedly reduced in the HG group compared with the LG group. The inactivation of glycogen synthase by AICA-riboside was accompanied by decreased gel mobility and was eliminated by protein phosphatase treatment. We conclude that acute AICA-riboside treatment leads to phosphorylation and deactivation of glycogen synthase in skeletal muscle. Although the data do not exclude a role of other kinases/phosphatases, they suggest that glycogen synthase may be a target for AMPK in vivo. Both basal and AICA-riboside-induced AMPK-alpha2 and glycogen synthase activities, as well as glucose transport, are depressed when the glycogen stores are plentiful. Because the glycogen level did not affect adenine nucleotide concentrations, our data suggest that glycogen may directly affect the activation state of AMPK in skeletal muscle.


Asunto(s)
Adenosina Monofosfato/fisiología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Glucógeno Sintasa/metabolismo , Glucógeno/fisiología , Músculo Esquelético/enzimología , Proteínas Quinasas/metabolismo , Ribonucleósidos/farmacología , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/metabolismo , Alimentación Animal , Animales , Desoxiglucosa/farmacocinética , Glucógeno Sintasa/antagonistas & inhibidores , Isoenzimas/metabolismo , Masculino , Actividad Motora/fisiología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Ribonucleótidos/metabolismo , Natación
15.
Diabetes ; 52(1): 9-15, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12502487

RESUMEN

We report here use of human myoblasts in culture to study the relationships between cellular glycogen concentrations and the activities of glycogen synthase (GS) and AMP-activated protein kinase (AMPK). Incubation of cells for 2 h in the absence of glucose led to a 25% decrease in glycogen content and a significant decrease in the fractional activity of GS. This was accompanied by stimulation of both the alpha1 and alpha2 isoforms of AMPK, without significant alterations in the ratios of adenine nucleotides. When glucose was added to glycogen-depleted cells, a rapid and substantial increase in GS activity was accompanied by inactivation of AMPK back to basal values. Inclusion of the glycogen phosphorylase inhibitor, CP-91149, prevented the loss of glycogen during glucose deprivation but not the activation of AMPK. However, in the absence of prior glycogen breakdown, glucose treatment failed to activate GS above control values, indicating the crucial role of glycogen content. Activation of AMPK by either 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) or hydrogen peroxide was also associated with a decrease in the activity ratio of GS. AICAR treatment had no effect on total cellular glycogen content but led to a modest increase in glucose uptake. These data support a role for AMPK in both stimulating glucose uptake and inhibiting GS in intact cells, thus promoting glucose flux through glycolysis.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Glucosa/farmacología , Glucógeno Sintasa/metabolismo , Glucógeno/farmacología , Proteínas Quinasas Activadas por AMP , Amidas/farmacología , Aminoimidazol Carboxamida/farmacología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Glucosa/deficiencia , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Sintasa/antagonistas & inhibidores , Humanos , Peróxido de Hidrógeno/farmacología , Indoles/farmacología , Isoenzimas/metabolismo , Complejos Multienzimáticos/fisiología , Mioblastos/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Ribonucleótidos/farmacología
16.
Diabetes ; 49(2): 263-71, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10868943

RESUMEN

Glycogen synthase (GS) activity is reduced in skeletal muscle of type 2 diabetes, despite normal protein expression, consistent with altered GS regulation. Glycogen synthase kinase-3 (GSK-3) is involved in regulation (phosphorylation and deactivation) of GS. To access the potential role of GSK-3 in insulin resistance and reduced GS activity in type 2 diabetes, the expression and activity of GSK-3 were studied in biopsies of vastus lateralis from type 2 and nondiabetic subjects before and after 3-h hyperinsulinemic (300 mU x m(-2) x min(-1))-euglycemic clamps. The specific activity of GSK-3alpha did not differ between nondiabetic and diabetic muscle and was decreased similarly after 3-h insulin infusion. However, protein levels of both alpha and beta isoforms of GSK-3 were elevated (approximately 30%) in diabetic muscle compared with lean (P < 0.01) and weight-matched obese nondiabetic subjects (P < 0.05) and were unchanged by insulin infusion. Thus, both basal and insulin-stimulated total GSK-3 activities were elevated by approximately twofold in diabetic muscle. GSK-3 expression was related to in vivo insulin action, as GSK-3 protein was negatively correlated with maximal insulin-stimulated glucose disposal rates. In summary, GSK-3 protein levels and total activities are 1) elevated in type 2 diabetic muscle independent of obesity and 2) inversely correlated with both GS activity and maximally insulin-stimulated glucose disposal. We conclude that increased GSK-3 expression in diabetic muscle may contribute to the impaired GS activity and skeletal muscle insulin resistance present in type 2 diabetes.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina , Músculo Esquelético/fisiopatología , Adulto , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Humanos , Insulina/farmacología , Isoenzimas/metabolismo , Persona de Mediana Edad , Músculo Esquelético/enzimología , Fosforilación/efectos de los fármacos , Valores de Referencia
17.
Leukemia ; 29(7): 1555-1563, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25703587

RESUMEN

The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno/biosíntesis , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Metabolómica , Animales , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Citometría de Flujo , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/genética , Glucólisis , Células HEK293 , Humanos , Leucemia Mieloide/mortalidad , Ratones , Fosforilación , Pronóstico , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Células Tumorales Cultivadas
18.
FEBS Lett ; 200(1): 47-50, 1986 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-3084299

RESUMEN

Glucagon and epinephrine promote the inactivation of basal glycogen synthase in hepatocytes isolated from fed rats. However, this effect is only observable when the activation state of glycogen synthase is measured using the low glucose-6-P/high glucose-6-P activity ratio assay. This inactivation is the consequence of an increase in the kinetic parameters (S0.5 for UDP-glucose and M0.5 for glucose-6-P) of the enzyme. Therefore, this work demonstrates these hormones are also able to control glycogen synthase from fed animals.


Asunto(s)
Epinefrina/farmacología , Glucagón/farmacología , Glucógeno Sintasa/antagonistas & inhibidores , Hígado/enzimología , Animales , Ingestión de Alimentos , Técnicas In Vitro , Cinética , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Endogámicas
19.
FEBS Lett ; 170(2): 310-4, 1984 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-6427008

RESUMEN

The effects of epinephrine and vasopressin on the phosphorylation state of glycogen synthase were studied using rat hepatocytes incubated with 32P. After the incubation with hormones, 32P-labeled glycogen synthase was isolated using antibodies against rat liver enzyme. The immunoprecipitate showed a single radioactive band ( Mapp 88 kDa) when subjected to SDS-gel electrophoresis. Both epinephrine and vasopressin inactivated the enzyme and increased the 32P content of glycogen synthase. Cleavage of the immunoprecipitate with CNBr yielded two major 32P-labeled fragments of Mapp approximately 27 and 12 kDa. Both hormones increased the 32P content of both fragments. These results prove that epinephrine and vasopressin increase the phosphate content of the enzyme promoting its phosphorylation at multiple sites.


Asunto(s)
Epinefrina/farmacología , Glucógeno Sintasa/metabolismo , Hígado/enzimología , Vasopresinas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Bromuro de Cianógeno , Glucógeno Sintasa/antagonistas & inhibidores , Técnicas de Inmunoadsorción , Masculino , Fragmentos de Péptidos/metabolismo , Fosfatos/metabolismo , Radioisótopos de Fósforo , Fosforilación , Ratas , Ratas Endogámicas
20.
Curr Top Med Chem ; 2(9): 915-38, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12171564

RESUMEN

The worldwide population afflicted with diabetes is growing at an epidemic rate. There are almost five times the number of people suffering from this disease today as compared to 10 years ago and the worldwide diabetic population is expected to exceed 300 million by the year 2028. This trend appears to be driven by the world's adoption of a "western lifestyle" comprising a combination of unhealthy dietary habits and a sedentary daily routine. Today, diabetes is the sixth leading cause of death in the United States and the death rates associated with diabetes have increased by 30% over the last decade. While medications are available to reduce blood glucose, approximately one third of the patients on oral medications will eventually fail to respond and require insulin injections. Consequently, there is a tremendous medical need for improved medications to manage this disease that demonstrate superior efficacy. Emerging knowledge regarding the underlying mechanisms that impair glucose-stimulated insulin secretion and the action of insulin on its target tissues has grown tremendously over the last two decades. During that same period of time, an understanding of the important role that phosphorylation state plays in signal transduction has drawn attention to several kinases as attractive approaches for the treatment of diabetes. Recent advances include the discovery of a"small molecule" allosteric binding site on the insulin receptor, inhibitors of glycogen synthase kinase-3(GSK-3) which improve insulin sensitivity in diabetic animal models and inhibitors of protein kinase C- beta that are presently being evaluated in clinical trials for diabetic retinopathy. This review will detail these recent discoveries and highlight emerging biological targets that hold potential to normalize blood glucose and prevent the progression of diabetes related complications.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Inhibidores Enzimáticos/uso terapéutico , Fosfotransferasas/metabolismo , Receptor de Insulina/efectos de los fármacos , Receptor de Insulina/metabolismo , Animales , Glucemia/metabolismo , Complicaciones de la Diabetes , Activación Enzimática/efectos de los fármacos , Glucógeno Sintasa/antagonistas & inhibidores , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Fosfotransferasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Insulina/clasificación , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA