RESUMEN
BACKGROUND: Asthma is a heterogeneous, inflammatory disease with several phenotypes and endotypes. Severe asthmatics often exhibit mixed granulocytosis with reduced corticosteroid sensitivity. Bronchom is a newly developed Ayurvedic prescription medicine, indicated for the treatment of obstructive airway disorders. The purpose of the present study was to evaluate the in-vivo efficacy of Bronchom in mouse model of mixed granulocytic asthma with steroidal recalcitrance. METHODS: High-performance thin layer chromatography (HPTLC) and Ultra-high performance liquid chromatography (UHPLC) were employed to identify and quantitate the phytometabolites present in Bronchom. The preclinical effectiveness of Bronchom was assessed in house dust mite (HDM) and Complete Freund's adjuvant (CFA)-induced mixed granulocytic asthma model in mice. High dose of dexamethasone was tested parallelly. Specific-pathogen-free C57BL/6 mice were immunized with HDM and CFA and nineteen days later, they were intranasally challenged with HDM for four consecutive days. Then the mice were challenged with nebulized methacholine to evaluate airway hyperresponsiveness (AHR). Inflammatory cell influx was enumerated in the bronchoalveolar lavage fluid (BALF) followed by lung histology. Additionally, the concentrations of Th2 and pro-inflammatory cytokines was assessed in the BALF by multiplexed immune assay. The mRNA expression of pro-inflammatory cytokines and Mucin 5AC (MUC5AC) was also evaluated in the lung. RESULTS: HPTLC fingerprinting and UHPLC quantification of Bronchom revealed the presence of bioactive phytometabolites, namely, rosmarinic acid, gallic acid, methyl gallate, piperine, eugenol and glycyrrhizin. Bronchom effectively reduced AHR driven by HDM-CFA and the influx of total leukocytes, eosinophils and neutrophils in the BALF. In addition, Bronchom inhibited the infiltration of inflammatory cells in the lung as well as goblet cell metaplasia. Further, it also suppressed the elevated levels of Th2 cytokines and pro-inflammatory cytokines in the BALF. Similarly, Bronchom also regulated the mRNA expression of pro-inflammatory cytokines as well as MUC5AC in mice lungs. Reduced effectiveness of a high dose of the steroid, dexamethasone was observed in the model. CONCLUSIONS: We have demonstrated for the first time the robust pharmacological effects of an herbo-mineral medicine in an animal model of mixed granulocytic asthma induced by HDM and CFA. The outcomes suggest the potential utility of Bronchom in severe asthmatics with a mixed granulocytic phenotype.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Modelos Animales de Enfermedad , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Ratones , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Corticoesteroides/uso terapéutico , Corticoesteroides/farmacología , Citocinas/metabolismo , Medicina Ayurvédica , Líquido del Lavado Bronquioalveolar , Femenino , Ratones Endogámicos C57BL , Dexametasona/farmacología , Dexametasona/uso terapéutico , Extractos Vegetales/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Inflamación/tratamiento farmacológico , Hipersensibilidad Respiratoria/tratamiento farmacológico , Pyroglyphidae/inmunologíaRESUMEN
BACKGROUND: Airway hyperresponsiveness is a hallmark of asthma across asthma phenotypes. Airway hyperresponsiveness to mannitol specifically relates to mast cell infiltration of the airways, suggesting inhaled corticosteroids to be effective in reducing the response to mannitol, despite low levels of type 2 inflammation. OBJECTIVE: We sought to investigate the relationship between airway hyperresponsiveness and infiltrating mast cells, and the response to inhaled corticosteroid treatment. METHODS: In 50 corticosteroid-free patients with airway hyperresponsiveness to mannitol, mucosal cryobiopsies were obtained before and after 6 weeks of daily treatment with 1600 µg of budesonide. Patients were stratified according to baseline fractional exhaled nitric oxide (Feno) with a cutoff of 25 parts per billion. RESULTS: Airway hyperresponsiveness was comparable at baseline and improved equally with treatment in both patients with Feno-high and Feno-low asthma: doubling dose, 3.98 (95% CI, 2.49-6.38; P < .001) and 3.85 (95% CI, 2.51-5.91; P < .001), respectively. However, phenotypes and distribution of mast cells differed between the 2 groups. In patients with Feno-high asthma, airway hyperresponsiveness correlated with the density of chymase-high mast cells infiltrating the epithelial layer (ρ, -0.42; P = .04), and in those with Feno-low asthma, it correlated with the density in the airway smooth muscle (ρ, -0.51; P = .02). The improvement in airway hyperresponsiveness after inhaled corticosteroid treatment correlated with a reduction in mast cells, as well as in airway thymic stromal lymphopoietin and IL-33. CONCLUSIONS: Airway hyperresponsiveness to mannitol is related to mast cell infiltration across asthma phenotypes, correlating with epithelial mast cells in patients with Feno-high asthma and with airway smooth muscle mast cells in patients with Feno-low asthma. Treatment with inhaled corticosteroids was effective in reducing airway hyperresponsiveness in both groups.
Asunto(s)
Asma , Hipersensibilidad Respiratoria , Humanos , Mastocitos/metabolismo , Óxido Nítrico/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Corticoesteroides/uso terapéutico , Hipersensibilidad Respiratoria/tratamiento farmacológico , Manitol , FenotipoRESUMEN
Glucocorticoids are a highly effective first-line treatment option for many inflammatory diseases, including asthma. Some patients develop a steroid-resistant condition, yet, the cellular and molecular mechanisms underlying steroid resistance remain largely unknown. In this study, we used a murine model of steroid-resistant airway inflammation and report that combining systemic dexamethasone and intranasal IL-27 is able to reverse the inflammation. Foxp3+ regulatory T cells (Tregs) were required during dexamethasone/IL-27 treatment of steroid-resistant allergic inflammation, and importantly, direct stimulation of Tregs via glucocorticoid or IL-27 receptors was essential. Mechanistically, IL-27 stimulation in Tregs enhanced expression of the agonistic glucocorticoid receptor-α isoform. Overexpression of inhibitory glucocorticoid receptor-ß isoform in Tregs alone was sufficient to elicit steroid resistance in a steroid-sensitive allergic inflammation model. Taken together, our results demonstrate for the first time, to our knowledge, that Tregs are instrumental during steroid resistance and that manipulating steroid responsiveness in Tregs may represent a novel strategy to treat steroid refractory asthma.
Asunto(s)
Asma/inmunología , Dexametasona/uso terapéutico , Interleucina-27/uso terapéutico , Hipersensibilidad Respiratoria/inmunología , Linfocitos T Reguladores/inmunología , Alérgenos/inmunología , Animales , Asma/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológicoRESUMEN
In recent years, several new asthma therapeutics have been developed. Although many of these agents show promise in treating allergic asthma, they are less effective against nonallergic forms of asthma. The gut microbiome has important roles in human health and disease, and a growing body of evidence indicates a link between the gut microbiome and asthma. Here, we review those data focusing on the role of the microbiome in mouse models of nonallergic asthma including obese asthma and asthma triggered by exposure to air pollutants. We describe the impact of antibiotics, diet, and early life events on airway responses to the air pollutant ozone, including in the setting of obesity. We also review potential mechanisms responsible for gut-lung interactions focusing on bacterial-derived metabolites, the immune system, and hormones. Finally, we discuss future prospects for gut microbiome-targeted therapies such as fecal microbiome transplantation, prebiotics, probiotics, and prudent use of antibiotics. Better understanding of the role of the microbiome in airway responses may lead to exploration of new microbiome-targeted therapies to control asthma, especially nonallergic forms of asthma.
Asunto(s)
Microbioma Gastrointestinal , Ozono/efectos adversos , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/microbiología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Pulmón/patología , Hipersensibilidad Respiratoria/tratamiento farmacológicoRESUMEN
LABA/ICS and LABA/LAMA/ICS combinations elicit beneficial effects in asthma. Specific evidence concerning the impact of combining indacaterol acetate (IND), glycopyrronium bromide (GLY), and mometasone furoate (MF) on human airway hyperresponsiveness (AHR) and airway inflammation is still missing. The aim of this study was to characterize the synergy of IND/MF and IND/GLY/MF combinations, both once-daily treatments for asthma, in hyperresponsive airways. Passively sensitized human medium and small airways were stimulated by histamine and treated with IND/MF (molar ratio: 100/45, 100/90) and IND/GLY/MF (molar ratio: 100/37/45, 100/37/90). The effect on contractility and airway inflammation was tested. Drug interaction was assessed by Bliss Independence equation and Unified Theory. IND/MF 100/90 elicited middle-to-very strong synergistic relaxation in medium and small airways (+≈20-30% vs. additive effect, P < 0.05), for IND/MF 100/45 the synergy was middle-to-very strong in small airways (+≈20% vs. additive effect, P < 0.05), and additive in medium bronchi (P > 0.05 vs. additive effect). IND/GLY/MF 100/37/45 and 100/37/90 induced very strong synergistic relaxation in medium and small airways (+≈30-50% vs. additive effect, P < 0.05). Synergy was related with significant (P < 0.05) reduction in IL-4, IL-5, IL-6, IL-9, IL-13, TNF-α, TSLP, NKA, SP, and non-neuronal ACh, and enhancement in cAMP. IND/MF and IND/GLY/MF combinations synergistically interact in hyperresponsive medium and small airways and modulate the levels of cytokines, neurokinins, ACh, and intracellular cAMP. The concentrations of MF in the combinations modulate the effects in the target tissue.
Asunto(s)
Antiinflamatorios/farmacología , Bronquios/efectos de los fármacos , Broncodilatadores/farmacología , Glicopirrolato/farmacología , Indanos/farmacología , Furoato de Mometasona/farmacología , Quinolonas/farmacología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Acetilcolina/metabolismo , Bronquios/metabolismo , Bronquios/fisiología , AMP Cíclico/metabolismo , Citocinas/metabolismo , Interacciones Farmacológicas , Quimioterapia Combinada , Humanos , Contracción Isométrica/efectos de los fármacos , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/fisiopatologíaRESUMEN
Context: Allergic asthma is a multifactorial airway disease characterised by chronic lung inflammation and airway remodelling. The histamine H4 receptor involved in the chemotaxis of leukocytes and mast cells to the site of inflammation is suggested to be a potential drug target for allergy and asthma. In this study we examined the effect of Compound A, N-(2-Aminoethyl)-5-chloro-1H-indol-2-carboxamide a H4 receptor antagonist in allergic asthma mice model. Objective: To investigate the anti-asthmatic effect of compound A in in vivo, airway inflammation in ovalbumin (OVA) induced allergic asthma mouse model was used. Methodology: Allergic asthma was induced in Balb/c mice using ovalbumin. BAL fluid was examined for the level of IgE, IL-4, IL-5, IL-13 and IL-17 using ELISA. Furthermore, infiltration of leucocytes by histopathology and effect of compound A on signalling molecules were examined in lung tissue. Results: In mice pre-treatment with compound A (10 mg/kg, 20 mg/kg, 30 mg/kg) at different concentrations markedly reduced the levels of IgE, Th2 cytokine IL-4, IL-5, IL-13 and Th17 cytokine IL-17 in BAL fluid. Histopathological examination of lung tissue showed that compound A was able to reduce the level of inflammatory infiltrates. Furthermore, lung tissue from Compound A treated group shown to down-regulate the levels of signalling molecules such as ERK1/2, Akt, SAPK/JNK and NF-κB compared to OVA treated group. Discussion and conclusion: Taken together our data demonstrates that compound A has shown to block the H4R-mediated allergic inflammation in this allergic asthma mice model and may be used as a molecule to study the function of H4R. Abbreviations: Compound A, N-(2-Aminoethyl)-5-chloro-1H-indol-2-carboxamide; JNJ7777120, 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine; H4R: Histamine 4 Receptor; AHR: Airway hyper responsiveness.
Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Hipersensibilidad/tratamiento farmacológico , Indoles/uso terapéutico , Piperazinas/química , Hipersensibilidad Respiratoria/tratamiento farmacológico , Células Th2/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina E/sangre , Indoles/química , Indoles/farmacología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Receptores Histamínicos H4/antagonistas & inhibidores , Transducción de SeñalRESUMEN
Rationale: Phthalates are a group of chemicals used in common commercial products. Epidemiological studies suggest that phthalate exposure is associated with development or worsening of allergic diseases such as asthma. However, effects of dibutyl phthalate (DBP) or other phthalates found in high concentrations in indoor air have never been examined in allergic individuals in a controlled exposure setting.Objectives: To investigate the airway effects in humans caused by inhalation of a known concentration of a single phthalate, DBP.Methods: In a randomized crossover study, 16 allergen-sensitized participants were exposed to control air or DBP for 3 hours in an environmental chamber followed immediately by an allergen inhalation challenge. Bronchoalveolar wash and lavage were obtained 24 hours after exposure. Lung function, early allergic response, airway responsiveness, inflammation, immune mediators, and immune cell phenotypes were assessed after DBP exposure.Measurements and Main Results: DBP exposure increased the early allergic response (21.4% decline in FEV1 area under the curve, P = 0.03). Airway responsiveness was increased by 48.1% after DBP exposure in participants without baseline hyperresponsiveness (P = 0.01). DBP increased the recruitment of BAL total macrophages by 4.6% (P = 0.07), whereas the M2 macrophage phenotype increased by 46.9% (P = 0.04). Airway immune mediator levels were modestly affected by DBP.Conclusions: DBP exposure augmented allergen-induced lung function decline, particularly in those without baseline hyperresponsiveness, and exhibited immunomodulatory effects in the airways of allergic individuals. This is the first controlled human exposure study providing biological evidence for phthalate-induced effects in the airways.Clinical trial registered with www.clinicaltrials.gov (NCT02688478).
Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Dibutil Ftalato/uso terapéutico , Flujo Espiratorio Forzado/fisiología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Sistema Respiratorio/inmunología , Adulto , Estudios Cruzados , Femenino , Flujo Espiratorio Forzado/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Plastificantes/uso terapéutico , Pruebas de Función Respiratoria , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/fisiopatología , Adulto JovenRESUMEN
Recent studies on the pathophysiology of irritable bowel syndrome (IBS) have focused on the role of mast cells (MCs) in intestinal mucosal immunity. A link between allergic airway diseases (AADs) and IBS has been suggested because both diseases have similar pathophysiology. We aimed to investigate whether the induction of AAD in mice could lead to inflammation of the colonic mucosa, similar to IBS. We also evaluated whether this inflammatory response could be suppressed by administering a therapeutic agent. Mice were divided into three groups: control, AAD-induced, and salbutamol-treated. An AAD mouse model was established by intraperitoneal injection and nasal challenge with ovalbumin. Mice with AAD were intranasally administered salbutamol. Analyses of cytokine levels, MC count, and tryptase levels in the intestinal mucosa were performed to compare the changes in inflammatory responses among the three groups. Inflammation was observed in the intestinal mucosa of mice in the AAD group. This inflammation in AAD mice was suppressed after salbutamol treatment. Our study demonstrates that AAD induces an inflammatory response similar to that in IBS, suggesting a possible association between IBS and AADs. In patients with IBS with such allergic components, salbutamol may have the potential to alleviate the inflammatory response.
Asunto(s)
Albuterol/uso terapéutico , Inflamación , Mucosa Intestinal/inmunología , Síndrome del Colon Irritable/inducido químicamente , Ovalbúmina/toxicidad , Hipersensibilidad Respiratoria/inducido químicamente , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Mucosa Intestinal/patología , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/inmunología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/administración & dosificación , Ovalbúmina/efectos adversos , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/inmunologíaRESUMEN
BACKGROUND: Bevacizumab with anti-angiogenesis properties reduces the vascular endothelial growth factor (VEGF) level and has widely been used to treat various diseases such as lung diseases and chronic obstructive pulmonary disease (COPD). This study, therefore, aimed to consider the effects of bevacizumab on VEGF receptor 2 (VEGFR2) and lung inflammation of the ovalbumin-induced rat model of airway hypersensitivity. MATERIALS AND METHODS: Twenty-one male Wistar rats were randomly divided into 3 groups (n = 7 in each group): (1) control, (2) ovalbumin (OVA)-sensitized, and (3) OVA-sensitized with bevacizumab (OVA + Bmab). Groups 2 and 3 were sensitized with ovalbumin (OVA) and aluminum hydroxide on days 1, 8 and challenged with OVA on day 15 by atomization for 10 days (inhalation). After OVA sensitization, the OVA + Bmab was treated with bevacizumab for 2 weeks. VEGFR2 was semiquantitatively analyzed in the lungs by immunohistochemistry. VEGF was measured in the lung tissue by ELISA method. The mRNA of IL-10 and IL-6 lung tissue were measured by real-time PCR. RESULTS: Ovalbumin exposure promoted the expression of VEGF and resulted in inflammatory factors overexpression (p ≤ 0.05). However, rats in OVA + Bmab group showed significantly a decrease in VEGFR2 and IL-1ß, IL-6, TNFα, and an increase in IL-10 (p ≤ 0.05). CONCLUSION: The results show that bevacizumab efficiently diminishes bronchial inflammation via reducing the expression of VEGFR2, and IL-6 genes and enhancing the expression of IL-10 gene. Hence, bevacizumab could be considered as a potential candidate drug to control pathological conditions relevant to airway hypersensitivity.
Asunto(s)
Bevacizumab/uso terapéutico , Citocinas/antagonistas & inhibidores , Ovalbúmina/toxicidad , Hipersensibilidad Respiratoria/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/farmacología , Citocinas/metabolismo , Masculino , Ratas , Ratas Wistar , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
CD69 has been known as an early activation marker of lymphocytes; whereas, recent studies demonstrate that CD69 also has critical functions in immune responses. Early studies using human samples revealed the involvement of CD69 in various inflammatory diseases including asthma. Moreover, murine disease models using Cd69-/- mice and/or anti-CD69 antibody (Ab) treatment have revealed crucial roles for CD69 in inflammatory responses. However, it had not been clear how the CD69 molecule contributes to the pathogenesis of inflammatory diseases. We recently elucidated a novel mechanism, in which the interaction between CD69 and its ligands, myosin light chain 9, 12a and 12b (Myl9/12) play a critical role in the recruitment of activated T cells into the inflammatory lung. In this review, we first summarize CD69 function based on its structure and then introduce the evidence for the involvement of CD69 in human diseases and murine disease models. Then, we will describe how we discovered CD69 ligands, Myl9 and Myl12, and how the CD69-Myl9 system regulates airway inflammation. Finally, we will discuss possible therapeutic usages of the blocking Ab to the CD69-Myl9 system.
Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Lectinas Tipo C/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/química , Antígenos de Diferenciación de Linfocitos T/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Hipersensibilidad/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
CONTEXT: Modified BuShenYiQi formula (M-BYF) is derived from BuShenYiQi formula, used for the treatment of allergic asthma. The exact effect and mechanism of M-BYF on the improvement of asthma remain unclear. OBJECTIVE: We investigated the mechanism underlying the therapeutic effect of M-BYF on allergic asthma. MATERIALS AND METHODS: The asthma model was established in female BALB/c mice that were sensitized and challenged with ovalbumin (OVA). Mice in the treated groups were orally treated once a day with M-BYF (7, 14 and 28 g/kg/d) or dexamethasone before OVA challenge. Control and Model group received saline. Pathophysiological abnormalities and percentages of lung type 2 innate lymphoid cells (ILC2s) and Th9 cells were measured. Expression levels of type 2 cytokines and transcription factors required for these cells function and differentiation were analysed. Expression of vasoactive intestinal polypeptide (VIP)-VPAC2 signalling pathway-related proteins, and percentages of VIP expressing (VIP+) cells and VPAC2, CD90 co-expressing (VPAC2+CD90+) cells were detected. RESULTS: M-BYF alleviated airway hyperresponsiveness, inflammation, mucus hypersecretion and collagen deposition in asthmatic mice. M-BYF down-regulated percentages of ILC2s and Th9 cells with lower expression of GATA3, PU.1 and IRF4, reduced IL-5, IL-13, IL-9 and VIP production. The decrease in the expression of VIP-VPAC2 signalling pathway and percentages of VIP+ cells, VPAC2+CD90+ cells were observed after M-BYF treatment. The LD50 value of M-BYF was higher than 90 g/kg. DISCUSSION AND CONCLUSIONS: M-BYF alleviated experimental asthma by negatively regulating ILC2s and Th9 cells and the VIP-VPAC2 signalling pathway. These findings provide the theoretical basis for future research of M-BYF in asthma patient population.
Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Animales , Asma/inmunología , Dexametasona/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Hipersensibilidad Respiratoria/inmunología , Transducción de Señal/efectos de los fármacos , Antígenos Thy-1/inmunología , Péptido Intestinal Vasoactivo/metabolismoRESUMEN
It is well known that the prevalence of asthma is higher in athletes, including Olympic athletes, than in the general population. In this study, we analyzed the mechanism of exercise-induced bronchoconstriction by using animal models of athlete asthma. Mice were made to exercise on a treadmill for a total duration of 1 week, 3 weeks, or 5 weeks. We analyzed airway responsiveness, BAL fluid, lung homogenates, and tissue histology for each period. In mice that were treated (i.e., the treatment model), treatments were administered from the fourth to the fifth week. We also collected induced sputum from human athletes with asthma and analyzed the supernatants. Airway responsiveness to methacholine was enhanced with repeated exercise stimulation, although the cell composition in BAL fluid did not change. Exercise induced hypertrophy of airway smooth muscle and subepithelial collagen deposition. Cysteinyl-leukotriene (Cys-LT) levels were significantly increased with exercise duration. Montelukast treatment significantly reduced airway hyperresponsiveness (AHR) and airway remodeling. Expression of PLA2G4 (phospholipase A2 group IV) and leukotriene C4 synthase in the airway epithelium was upregulated in the exercise model, and inhibition of PLA2 ameliorated AHR and airway remodeling, with associated lower levels of Cys-LTs. The levels of Cys-LTs in sputum from athletes did not differ between those with and without sputum eosinophilia. These data suggest that AHR and airway remodeling were caused by repeated and strenuous exercise. Cys-LTs from the airway epithelium, but not inflammatory cells, may play an important role in this mouse model.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Broncoconstricción/fisiología , Cisteína/metabolismo , Fosfolipasas A2 Grupo II/metabolismo , Leucotrienos/metabolismo , Condicionamiento Físico Animal/fisiología , Acetatos/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Broncoconstricción/efectos de los fármacos , Ciclopropanos , Femenino , Leucotrienos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Quinolinas/farmacología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo , SulfurosRESUMEN
We investigated the mechanisms involved in the development of airway hyperresponsiveness (AHR) following exposure of mice to halogens. Male mice (C57BL/6; 20-25 g) exposed to either bromine (Br2) or Cl2 (600 or 400 ppm, respectively, for 30 min) developed AHR 24 h after exposure. Nifedipine (5 mg/kg body wt; an L-type calcium channel blocker), administered subcutaneously after Br2 or Cl2 exposure, produced higher AHR compared with Br2 or Cl2 alone. In contrast, diltiazem (5 mg/kg body wt; a nondihydropyridine L-type calcium channel blocker) decreased AHR to control (air) values. Exposure of immortalized human airway smooth muscle cells (hASMC) to Br2 resulted in membrane potential depolarization (Vm Air: 62 ± 3 mV; 3 h post Br2:-45 ± 5 mV; means ± 1 SE; P < 0.001), increased intracellular [Ca2+]i, and increased expression of the calcium-sensing receptor (Ca-SR) protein. Treatment of hASMC with a siRNA against Ca-SR significantly inhibited the Br2 and nifedipine-induced Vm depolarization and [Ca2+]i increase. Intranasal administration of an antagonist to Ca-SR in mice postexposure to Br2 reversed the effects of Br2 and nifedipine on AHR. Incubation of hASMC with low-molecular-weight hyaluronan (LMW-HA), generated by exposing high-molecular-weight hyaluronan (HMW-HA) to Br2, caused Vm depolarization, [Ca2+]i increase, and Ca-SR expression to a similar extent as exposure to Br2 and Cl2. The addition of HMW-HA to cells or mice exposed to Br2, Cl2, or LMW-HA reversed these effects in vitro and improved AHR in vivo. We conclude that detrimental effects of halogen exposure on AHR are mediated via activation of the Ca-SR by LMW-HA.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Ácido Hialurónico/farmacología , Músculo Liso/efectos de los fármacos , Receptores Sensibles al Calcio/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Viscosuplementos/farmacología , Animales , Bromo/toxicidad , Células Cultivadas , Cloruros/toxicidad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Músculo Liso/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/genética , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patologíaRESUMEN
Zona pellucida binding protein 2 (Zpbp2) and ORMDL sphingolipid biosynthesis regulator 3 (Ormdl3), mapped downstream of Zpbp2, were identified as two genes associated with airway hyper-responsiveness (AHR). Ormdl3 gene product has been shown to regulate the biosynthesis of ceramides. Allergic asthma was shown to be associated with an imbalance between very-long-chain ceramides (VLCCs) and long-chain ceramides (LCCs). We hypothesized that Fenretinide can prevent the allergic asthma-induced augmentation of Ormdl3 gene expression, normalize aberrant levels of VLCCs and LCCs, and treat allergic asthma symptoms. We induced allergic asthma by house dust mite (HDM) in A/J WT mice and Zpbp2 KO mice expressing lower levels of Ormdl3 mRNA than WT. We investigated the effect of a novel formulation of Fenretinide, LAU-7b, on the AHR, inflammatory cell infiltration, mucus production, IgE levels, and ceramide levels. Although lower Ormdl3 expression, which was observed in Zpbp2 KO mice, was associated with lower AHR, allergic Zpbp2 KO mice were not protected from inflammatory cell infiltration, mucus accumulation, or aberrant levels of VLCCs and LCCs induced by HDM. LAU-7b treatment protects both the Zpbp2 KO and WT mice. The treatment significantly lowers the gene expression of Ormdl3, normalizes the VLCCs and LCCs, and corrects all the other phenotypes associated with allergic asthma after HDM challenge, except the elevated levels of IgE. LAU-7b treatment prevents the augmentation of Ormdl3 expression and ceramide imbalance induced by HDM challenge and protects both WT and Zpbp2 KO mice against allergic asthma symptoms. SIGNIFICANCE STATEMENT: Compared with A/J WT mice, KO mice with Zpbp2 gene deletion have lower AHR and lower levels of Ormdl3 expression. The novel oral clinical formulation of Fenretinide (LAU-7b) effectively lowers the AHR and protects against inflammatory cell infiltration and mucus accumulation induced by house dust mite in both Zpbp2 KO and WT A/J mice. LAU-7b prevents Ormdl3 overexpression in WT allergic mice and corrects the aberrant levels of very-long-chain and long-chain ceramides in both WT and Zpbp2 KO allergic mice.
Asunto(s)
Asma/tratamiento farmacológico , Asma/metabolismo , Ceramidas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fenretinida/farmacología , Proteínas de la Membrana/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismoRESUMEN
Cannabinoids and the endocannabinoid system significantly contributes to the airway inflammation. Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are two main enzymes responsible for the metabolism of the endocannabinoids anandamide (AEA) and 2-arachydonoyl glycerol (2-AG), respectively. In the present study, we aimed to investigate the effects of local and systemic FAAH and MAGL inhibitor treatments in experimental airway inflammation and tracheal hyperreactivity in mice. Airway inflammation was induced by intranasal (i.n.) lipopolysaccharide (LPS) application (60 µl; 0,1 mg/ml in PBS) to mice and the control group received PBS. Systemic (intraperitoneal (i.p.)) or local (i.n.) FAAH inhibitor URB597 and MAGL inhibitor JZL184 treatments were administered 1h before LPS/PBS application. Fourty 8 h after LPS/PBS application, tracheas were removed to assess airway reactivity, and the lungs and bronchoalveolar lavage (BAL) fluids were isolated for histopathological evaluation, cytokine and endocannabinoid measurements. LPS application lead to an increase in 5-hydroxytryptamine (5-HT) contractions in isolated tracheal rings while carbachol contractions remained unchanged. The increased 5-HT contractions were prevented by both systemic and local URB597 and JZL184 treatments. Systemic treatment with URB597 and JZL184, and local treatment with JZL184 reduced peribronchial and paranchymal inflammation in the LPS group while i.n. application of URB597 worsened the inflammation in the lungs. Systemic URB597 treatment increased lung AEA level whereas it had no effect on 2-AG level. However, JZL184 treatment increased 2-AG level by either systemic or local application, and also elevated AEA level. Inflammation-induced increase in neutrophil numbers was only prevented by systemic URB597 treatment. However, both URB597 and JZL184 treatments abolished the increased TNF-α level either they are administered systemically or locally. These results indicate that FAAH and MAGL inhibition may have a protective effect in airway inflammation and airway hyperreactivity, and therefore their therapeutic potential for airway diseases should be further investigated.
Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Benzodioxoles/farmacología , Carbamatos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/farmacología , Neumonía/tratamiento farmacológico , Animales , Ácidos Araquidónicos/metabolismo , Citocinas/efectos de los fármacos , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Pulmón/fisiopatología , Masculino , Ratones , Neumonía/inducido químicamente , Alcamidas Poliinsaturadas/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológicoRESUMEN
Inhibition of integrin α5ß1 emerges as a novel therapeutic option to block transmission of contractile forces during asthma attack. We designed and synthesized novel inhibitors of integrin α5ß1 by backbone replacement of known αvß1 integrin inhibitors. These integrin α5ß1 inhibitors also retain the nanomolar potency against αvß1 integrin, which shows promise for developing dual integrin α5ß1/αvß1 inhibitor. Introduction of hydrophobic adamantane group significantly boosted the potency as well as selectivity over integrin αvß3. We also demonstrated one of the inhibitors (11) reduced airway hyperresponsiveness in ex vivo mouse tracheal ring assay. Results from this study will help guide further development of integrin α5ß1 inhibitors as potential novel asthma therapeutics.
Asunto(s)
Adamantano/farmacología , Integrina alfa5beta1/antagonistas & inhibidores , Receptores de Vitronectina/antagonistas & inhibidores , Hipersensibilidad Respiratoria/tratamiento farmacológico , Adamantano/química , Animales , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.
Asunto(s)
Alérgenos/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , ARN Interferente Pequeño/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Eosinofilia Pulmonar/tratamiento farmacológico , Eosinofilia Pulmonar/metabolismo , Interferencia de ARN/efectos de los fármacos , Hipersensibilidad Respiratoria/tratamiento farmacológicoRESUMEN
Helminthostachys zeylanica is a traditional folk herb used to improve inflammation and fever in Taiwan. Previous studies showed that H. zeylanica extract could ameliorate lipopolysaccharide-induced acute lung injury in mice. The aim of this study was to investigate whether H. zeylanica water (HZW) and ethyl acetate (HZE) extracts suppressed eosinophil infiltration and airway hyperresponsiveness (AHR) in asthmatic mice, and decreased the inflammatory response and oxidative stress in tracheal epithelial cells. Human tracheal epithelial cells (BEAS-2B cells) were pretreated with various doses of HZW or HZE (1 µg/ml-10 µg/ml), and cell inflammatory responses were induced with IL-4/TNF-α. In addition, female BALB/c mice sensitized with ovalbumin (OVA), to induce asthma, were orally administered with HZW or HZE. The result demonstrated that HZW significantly inhibited the levels of proinflammatory cytokines, chemokines, and reactive oxygen species in activated BEAS-2B cells. HZW also decreased ICAM-1 expression and blocked monocytic cells from adhering to inflammatory BEAS-2B cells in vitro. Surprisingly, HZW was more effective than HZE in suppressing the inflammatory response in BEAS-2B cells. Our results demonstrated that HZW significantly decreased AHR and eosinophil infiltration, and reduced goblet cell hyperplasia in the lungs of asthmatic mice. HZW also inhibited oxidative stress and reduced the levels of Th2 cytokines in bronchoalveolar lavage fluid. Our findings suggest that HZW attenuated the pathological changes and inflammatory response of asthma by suppressing Th2 cytokine production in OVA-sensitized asthmatic mice.
Asunto(s)
Asma/tratamiento farmacológico , Citocinas/biosíntesis , Eosinófilos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Células Th2/inmunología , Tracheophyta , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Eosinófilos/fisiología , Femenino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil recruitment into tissues associated with allergic inflammation and asthma. To date, none of the CCR3 antagonists have shown efficacy in clinical trials. One reason might be their unbiased mode of inhibition that prevents receptor internalization, leading to drug tolerance. OBJECTIVE: We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a biased mode of inhibition that would block G protein signaling but enable or promote receptor internalization. METHODS: Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were analyzed by means of dynamic light scattering and nuclear magnetic resonance. Inhibitory activity on CCR3 signaling was assessed in vitro by using flow cytometry, confocal microscopy, and Western blot analysis in a CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed by using a triple-allergen mouse asthma model. RESULTS: R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor function. Half-maximal inhibitory concentration values for eotaxin-induced chemotaxis of blood eosinophils are in the low nanomolar range. R321 inhibits only the early phase of extracellular signal-regulated kinase 1/2 activation and not the late phase generally associated with ß-arrestin recruitment and receptor endocytosis, promoting CCR3 internalization and degradation. In vivo R321 effectively blocks eosinophil recruitment into the blood, lungs, and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma model. CONCLUSIONS: R321 is a potent and selective antagonist of the CCR3 signaling cascade. Inhibition through a biased mode of antagonism might hold significant therapeutic promise by eluding the formation of drug tolerance.
Asunto(s)
Eosinófilos/inmunología , Hipersensibilidad/tratamiento farmacológico , Pulmón/inmunología , Nanopartículas/uso terapéutico , Péptidos/uso terapéutico , Receptores CCR3/antagonistas & inhibidores , Hipersensibilidad Respiratoria/tratamiento farmacológico , Alérgenos/inmunología , Línea Celular , Movimiento Celular , Proteínas de Unión al GTP/antagonistas & inhibidores , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Transducción de SeñalRESUMEN
In the present work, the anti-inflammatory and antiasthmatic potential of biseugenol, isolated as the main component from n-hexane extract from leaves of Nectandra leucantha and chemically prepared using oxidative coupling from eugenol, was evaluated in an experimental model of mixed-granulocytic asthma. Initially, in silico studies of biseugenol showed good predictions for drug-likeness, with adherence to Lipinski's rules of five (RO5), good Absorption, Distribution, Metabolism and Excretion (ADME) properties and no alerts for Pan-Assay Interference Compounds (PAINS), indicating adequate adherence to perform in vivo assays. Biseugenol (20 mg·kg-1) was thus administered intraperitoneally (four days of treatment) and resulted in a significant reduction in both eosinophils and neutrophils of bronchoalveolar lavage fluid in ovalbumin-sensitized mice with no statistical difference from dexamethasone (5 mg·kg-1). As for lung function parameters, biseugenol (20 mg·kg-1) significantly reduced airway and tissue damping in comparison to ovalbumin group, with similar efficacy to positive control dexamethasone. Airway hyperresponsiveness to intravenous methacholine was reduced with biseugenol but was inferior to dexamethasone in higher doses. In conclusion, biseugenol displayed antiasthmatic effects, as observed through the reduction of inflammation and airway hyperresponsiveness, with similar effects to dexamethasone, on mixed-granulocytic ovalbumin-sensitized mice.