Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.628
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 566(7743): 264-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700906

RESUMEN

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cardiopatías/prevención & control , Cardiopatías/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/química , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Autofagia , Células Cultivadas , Progresión de la Enfermedad , Activación Enzimática , Everolimus/farmacología , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Cardiopatías/genética , Cardiopatías/patología , Humanos , Hipertrofia/tratamiento farmacológico , Hipertrofia/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Mutación , Miocitos Cardíacos/patología , Fosforilación , Fosfoserina/metabolismo , Presión , Ratas , Ratas Wistar , Serina/genética , Serina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
2.
Proc Natl Acad Sci U S A ; 119(28): e2204174119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787042

RESUMEN

Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403+/-) with Lpar1-ablated mice to create mice carrying both genetic changes (403+/- LPAR1 -/-) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403+/- LPAR1WT, 403+/- LPAR1 -/- mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Receptores del Ácido Lisofosfatídico/genética , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Proteínas Portadoras , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis , Hipertrofia/patología , Ratones
3.
Am J Physiol Heart Circ Physiol ; 326(1): H180-H189, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999644

RESUMEN

During select pathological conditions, the heart can hypertrophy and remodel in either a dilated or concentric ventricular geometry, which is associated with lengthening or widening of cardiomyocytes, respectively. The mitogen-activated protein kinase kinase 1 (MEK1) and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway has been implicated in these differential types of growth such that cardiac overexpression of activated MEK1 causes profound concentric hypertrophy and cardiomyocyte thickening, while genetic ablation of the genes encoding ERK1/2 in the mouse heart causes dilation and cardiomyocyte lengthening. However, the mechanisms by which this kinase signaling pathway controls cardiomyocyte directional growth as well as its downstream effectors are poorly understood. To investigate this, we conducted an unbiased phosphoproteomic screen in cultured neonatal rat ventricular myocytes treated with an activated MEK1 adenovirus, the MEK1 inhibitor U0126, or an eGFP adenovirus control. Bioinformatic analysis identified cytoskeletal-related proteins as the largest subset of differentially phosphorylated proteins. Phos-tag and traditional Western blotting were performed to confirm that many cytoskeletal proteins displayed changes in phosphorylation with manipulations in MEK1-ERK1/2 signaling. From this, we hypothesized that the actin cytoskeleton would be changed in vivo in the mouse heart. Indeed, we found that activated MEK1 transgenic mice and gene-deleted mice lacking ERK1/2 protein had enhanced non-sarcomeric actin expression in cardiomyocytes compared with wild-type control hearts. Consistent with these results, cytoplasmic ß- and γ-actin were increased at the subcortical intracellular regions of adult cardiomyocytes. Together, these data suggest that MEK1-ERK1/2 signaling influences the non-sarcomeric cytoskeletal actin network, which may be important for facilitating the growth of cardiomyocytes in length and/or width.NEW & NOTEWORTHY Here, we performed an unbiased analysis of the total phosphoproteome downstream of MEK1-ERK1/2 kinase signaling in cardiomyocytes. Pathway analysis suggested that proteins of the non-sarcomeric cytoskeleton were the most differentially affected. We showed that cytoplasmic ß-actin and γ-actin isoforms, regulated by MEK1-ERK1/2, are localized to the subcortical space at both lateral membranes and intercalated discs of adult cardiomyocytes suggesting how MEK1-ERK1/2 signaling might underlie directional growth of adult cardiomyocytes.


Asunto(s)
Actinas , Miocitos Cardíacos , Ratones , Ratas , Animales , Miocitos Cardíacos/metabolismo , Actinas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Citoesqueleto/metabolismo , Ratones Transgénicos , Hipertrofia/metabolismo , Hipertrofia/patología , Proteínas del Citoesqueleto/metabolismo , Células Cultivadas
4.
Eur Radiol ; 34(2): 970-980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37572193

RESUMEN

OBJECTIVES: To evaluate the left ventricular (LV) myocardial tissue characteristics in early adult obesity and its association with regional adipose tissue and ectopic fat deposition. METHODS: Forty-nine obese adults (mean body mass index: 29.9 ± 2.0 kg/m2) and 44 healthy controls were prospectively studied. LV native and post-contrast T1 values, extracellular volume fraction (ECV), regional adipose tissue (epicardial, visceral, and subcutaneous adipose tissue (EAT, VAT, and SAT)), and ectopic fat deposition (hepatic and pancreatic proton density fat fractions (H-PDFF and P-PDFF)) based on magnetic resonance imaging were compared. The association was assessed by multivariable linear regression. RESULTS: The obese participants showed reduced global ECV compared to the healthy controls (p < 0.05), but there was no significant difference in global native or post-contrast T1 values between the two groups. Additionally, the obese individuals exhibited higher EAT, VAT, SAT, H-PDFF, and P-PDFF than the controls (p < 0.05). ECV was associated with insulin resistance, dyslipidemia, and systolic blood pressure (SBP) (p < 0.05). Multiple linear regression demonstrated that H-PDFF and SAT were independently associated with ECV in entire population (ß = - 0.123 and - 0.012; p < 0.05). CONCLUSIONS: Reduced myocardial ECV in patients with mild-to-moderate obesity and its relationship to SBP may indicate that cardiomyocyte hypertrophy, rather than extracellular matrix expansion, is primarily responsible for myocardial tissue remodeling in early adult obesity. Our findings further imply that H-PDFF and SAT are linked with LV myocardial tissue remodeling in this cohort beyond the growth difference and cardiovascular risk factors. CLINICAL TRIALS REGISTRATION: Effect of lifestyle intervention on metabolism of obese patients based on smart phone software (ChiCTR1900026476). CLINICAL RELEVANCE STATEMENT: Myocardial fibrosis in severe obesity predicts poor prognosis. We showed that cardiomyocyte hypertrophy, not myocardial fibrosis, is the main myocardial tissue characteristic of early obesity. This finding raises the possibility that medical interventions, like weight loss, may prevent cardiac fibrosis. KEY POINTS: • Myocardial tissue characteristics in early adult obesity are unclear. • Myocardial extracellular volume fraction (ECV) can be quantitatively evaluated using T1 mapping based on cardiac magnetic resonance imaging (MRI). • Cardiac MRI-derived ECV may noninvasively evaluate myocardial tissue remodeling in early adult obesity.


Asunto(s)
Cardiomiopatías , Función Ventricular Izquierda , Humanos , Adulto , Estudios Prospectivos , Función Ventricular Izquierda/fisiología , Distribución Tisular , Miocardio/patología , Tejido Adiposo/patología , Obesidad/complicaciones , Obesidad/diagnóstico por imagen , Obesidad/patología , Fibrosis , Hipertrofia/patología , Imagen por Resonancia Cinemagnética
5.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38546222

RESUMEN

AIMS: Right heart disease (RHD), characterized by right ventricular (RV) and atrial (RA) hypertrophy, and cardiomyocytes' (CM) dysfunctions have been described to be associated with the incidence of atrial fibrillation (AF). Right heart disease and AF have in common, an inflammatory status, but the mechanisms relating RHD, inflammation, and AF remain unclear. We hypothesized that right heart disease generates electrophysiological and morphological remodelling affecting the CM, leading to atrial inflammation and increased AF susceptibility. METHODS AND RESULTS: Pulmonary artery banding (PAB) was surgically performed (except for sham) on male Wistar rats (225-275 g) to provoke an RHD. Twenty-one days (D21) post-surgery, all rats underwent echocardiography and electrophysiological studies (EPS). Optical mapping was performed in situ, on Langendorff-perfused hearts. The contractility of freshly isolated CM was evaluated and recorded during 1 Hz pacing in vitro. Histological analyses were performed on formalin-fixed RA to assess myocardial fibrosis, connexin-43 levels, and CM morphology. Right atrial levels of selected genes and proteins were obtained by qPCR and Western blot, respectively. Pulmonary artery banding induced severe RHD identified by RV and RA hypertrophy. Pulmonary artery banding rats were significantly more susceptible to AF than sham. Compared to sham RA CM from PAB rats were significantly elongated and hypercontractile. Right atrial CM from PAB animals showed significant augmentation of mRNA and protein levels of pro-inflammatory interleukin (IL)-6 and IL1ß. Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) and junctophilin-2 were decreased in RA CM from PAB compared to sham rats. CONCLUSIONS: Right heart disease-induced arrhythmogenicity may occur due to dysfunctional SERCA2a and inflammatory signalling generated from injured RA CM, which leads to an increased risk of AF.


Asunto(s)
Fibrilación Atrial , Cardiopatías , Masculino , Ratas , Animales , Miocitos Cardíacos/metabolismo , Ratas Wistar , Atrios Cardíacos , Hipertrofia/metabolismo , Hipertrofia/patología , Inflamación/metabolismo
6.
Kidney Blood Press Res ; 49(1): 69-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185105

RESUMEN

INTRODUCTION: Renal fibrosis is a critical event in the development and progression of chronic kidney disease (CKD), and it is considered the final common pathway for all types of CKD. The prevalence of CKD is higher in females; however, males have a greater prevalence of end-stage renal disease. In addition, low birth weight and low nephron number are associated with increased risk for CKD. This study examined the development and severity of unilateral ureter obstruction (UUO)-induced renal fibrosis in male and female wild-type (ROP +/+) and mutant (ROP Os/+) mice, a mouse model of low nephron number. METHODS: Male and female ROP +/+ and ROP Os/+ mice were subjected to UUO, and kidney tissue was collected at the end of the 10-day experimental period. Kidney histological analysis and mRNA expression determined renal fibrosis, tubular injury, collagen deposition, extracellular matrix proteins, and immune cell infiltration. RESULTS: Male and female UUO mice demonstrated marked renal injury, kidney fibrosis, and renal extracellular matrix production. Renal fibrosis and α-smooth muscle actin were increased to a similar degree in ROP +/+ and ROP Os/+ mice with UUO of either sex. There were also no sex differences in renal tubular cast formation or renal infiltration of macrophage in ROP +/+ and ROP Os/+ UUO mice. Interestingly, renal fibrosis and α-smooth muscle actin were 1.5-3-fold greater in UUO-ROP +/+ compared to UUO-ROP Os/+ mice. Renal inflammation phenotypes following UUO were also 30-45% greater in ROP +/+ compared to ROP Os/+ mice. Likewise, expression of extracellular matrix and renal fibrotic genes was greater in UUO-ROP +/+ mice compared to UUO-ROP Os/+ mice. In contrast to these findings, ROP Os/+ mice with UUO demonstrated glomerular hypertrophy with 50% greater glomerular tuft area compared to ROP +/+ with UUO. Glomerular hypertrophy was not sex-dependent in any of the genotypes of ROP mice. These findings provide evidence that low nephron number contributes to UUO-induced glomerular hypertrophy in ROP Os/+ mice but does not enhance renal fibrosis, inflammation, and renal tubular injury. CONCLUSION: Taken together, we demonstrate that low nephron number contributes to enhanced glomerular hypertrophy but not kidney fibrosis and tubular injury. We also demonstrate that none of the changes caused by UUO was affected by sex in any of the ROP mice genotypes.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Femenino , Masculino , Animales , Ratones , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , Actinas/metabolismo , Caracteres Sexuales , Riñón/patología , Insuficiencia Renal Crónica/complicaciones , Inflamación/patología , Fibrosis , Hipertrofia/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
J Nanobiotechnology ; 22(1): 72, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374072

RESUMEN

Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.


Asunto(s)
MicroARNs , Osteoartritis , Anciano , Animales , Humanos , Ratones , Condrocitos/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/metabolismo , Receptor Toll-Like 3/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Exosomas/genética
8.
Clin Neuropathol ; 43(3): 74-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818729

RESUMEN

AIMS: Corticobasal degeneration (CBD) is a rare neurodegenerative disorder. The status of the inferior olivary nucleus (ION) in CBD has been inadequately investigated. In this study, we conducted a pathological investigation of the ION in CBD. MATERIALS AND METHODS: We reviewed the data of Japanese patients with pathologically confirmed CBD who underwent consecutive autopsies between 1985 and 2020 at our institute. We retrospectively examined clinical data from medical records and clinicopathological conferences and semi-quantitatively assessed the ION, central tegmental tract, superior cerebellar peduncle, and dentate nucleus. RESULTS: Of the 32 patients included, 14 (43.8%) had hypertrophy of the ION (HION), of whom 6 showed laterality. In the 14 HION cases, with or without laterality, except in 1 unevaluable case, atrophy/myelin pallor of the central tegmental tract was observed on the same side as the hypertrophy. Ten patients with HION, with or without laterality, had atrophy/myelin pallor of the superior cerebellar peduncle on the contralateral side to the hypertrophy. CONCLUSION: The ION presents with hypertrophic changes in CBD. The lesion is a primary degeneration in CBD and is related to the degeneration of the Guillain-Mollaret triangle. This finding contributes to the elucidation of the specific pathological characteristics of CBD.


Asunto(s)
Degeneración Corticobasal , Hipertrofia , Núcleo Olivar , Humanos , Núcleo Olivar/patología , Femenino , Masculino , Hipertrofia/patología , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Anciano de 80 o más Años , Degeneración Corticobasal/patología , Complejo Olivar Inferior
9.
Gen Physiol Biophys ; 43(1): 49-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312034

RESUMEN

The objective of this article is to describe and classify usual interstitial pneumonia (UIP) changes according to their relevance in the pathology of the idiopathic pulmonary fibrosis (IPF) process. In a cohort of 50 patients (25♀, 25♂) with UIP findings, the percentage ratio between fibrotic and preserved parts of the lungs was quantified. Three quantitative stages of fibrotic involvement of the lung parenchyma and concomitant changes were defined. These are initial (≤20%), advanced (21-40%), and diffuse (≥41%) fibrosis of the lungs. Histologically, temporal heterogeneity is predominant with thickened alveolar septa, interstitial fibrosis, and the presence of fibroblastic foci up to mature diffuse fibrosis with honeycomb changes. The finding is accompanied by variably mature lymphocytic inflammation, presence of macrophages, emphysema, bronchioloectasia of the alveoli, bronchiectasis, bronchial muscle wall hypertrophy, hypertrophy of the vessel walls, alveolar mucosa, focal haemorrhage, and hyalinization of the lungs. Pneumocyte hyperplasia, occasionally atypical in appearance with hobnail changes, as well as squamous metaplasia are observed. In the methodically quantified stages of fibrous involvement, 14 subjects were classified (6♀, 8♂) into the stage of initial fibrosis, 21 subjects (11♀; 10♂) into the stage of advanced fibrosis, and 15 subjects (8♀; 7♂) into the stage of diffuse fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Biopsia , Fibrosis , Hipertrofia/patología
10.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 821-828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38415965

RESUMEN

PURPOSE: Minced cartilage implantation (MCI) is an evolving technique for the treatment of osteochondral lesions. It was hypothesised that mincing of cartilage may affect chondrocyte viability and phenotype and that embedding in collagen 1 gel results in an improved outcome. The objective of this study was to evaluate the impact of cartilage mincing and whether collagen 1 gel mediates beneficial effects on the chondrocyte phenotype and viability. METHODS: Human cartilage samples from 11 patients undergoing total knee arthroplasty were collected and minced according to the MCI protocol. Minced cartilage was cultured for 1 week with and without embedding in collagen 1 gel and was compared with unminced cartilage flakes as control. Quantitative reverse transcription-PCR and immunohistochemical staining for the chondrocyte marker genes SOX9, COL2, ACAN, COL10 and MMP13 were used to examine the chondrocyte phenotype. Cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. RESULTS: Increased chondrocyte cell death of cultured cartilage after mincing was observed. Chondrocytes from minced cartilage exhibited significantly decreased expression and protein levels of homeostatic and hypertrophic chondrocyte markers. Embedding in collagen 1 gel showed no positive effect on viability. However, remarkable is the increased expression of ACAN and the preserved protein level of SOX9 in the collagen 1-embedded minced cartilage. CONCLUSIONS: This study shows that the mincing of cartilage leads to increased chondrocyte death and decreased expression of chondrocyte phenotypic marker genes after 7 days. The use of collagen 1 gel may improve the stability of the phenotype, which needs to be further elucidated. LEVEL OF EVIDENCE: Level III (therapeutic).


Asunto(s)
Cartílago Articular , Cartílago , Adulto , Humanos , Condrocitos/patología , Fenotipo , Hipertrofia/metabolismo , Hipertrofia/patología , Colágeno/metabolismo , Cartílago Articular/patología
11.
J Sci Food Agric ; 104(4): 2156-2164, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926439

RESUMEN

BACKGROUND: Yeast biomass, encompassing fatty acids, terpenoids, vitamins, antioxidants, enzymes, and other bioactive compounds have been extensively utilized in food-related fields. The safety and potential bioactivities of Scheffersomyces segobiensis DSM 27193, an oleaginous yeast strain, are unclear. RESULTS: Scheffersomyces segobiensis DSM 27193 accumulated large palmitoleic acid (POA) levels (43.4 g kg-1 biomass) according to the results of whole-cell components. We annotated the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and predicted the categories and host of the pathogen-host interactions (PHI) genes in S. segobiensis DSM 27193. However, S. segobiensis DSM 27193 did not exert toxic effects in mice. Administration of S. segobiensis DSM 27193 led to substantial weight reduction by diminishing food intake in an obesity mouse model. Additionally, it reversed hepatic steatosis and adipose tissue hypertrophy, and improved abnormalities in serum biochemical profiles such as triglyceride, total cholesterol, low-density lipoprotein cholesterol, lipopolysaccharide, tumor necrosis factor-α, interleukin-1ß, and interleukin-6. CONCLUSION: This study is the first to illustrate the safety and effects of S. segobiensis DSM 27193 against obesity and offers a scientific rationale for its application in functional food supplements. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos Monoinsaturados , Hígado Graso , Saccharomycetales , Animales , Ratones , Hígado Graso/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Tejido Adiposo , Hipertrofia/patología , Colesterol , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Hígado
12.
Orbit ; 43(2): 203-207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37772931

RESUMEN

PURPOSE: To evaluate the prevalence and pattern of extraocular muscle enlargement and proptosis in patients with carotid cavernous fistulas (CCF). METHODS: We conducted a retrospective study on patients with digital subtraction angiography (DSA) confirmed CCFs with neuroimaging (computed tomography or magnetic resonance imaging) performed prior to the DSA. The maximum extraocular muscle diameters were recorded. Extraocular muscles were considered enlarged if they were greater than two standard deviations above the normal muscle diameters. Proptosis was defined as the distance between the interzygomatic line to the anterior globe of ≥2 mm compared to the contralateral orbit or ≥21 mm. RESULTS: Forty orbits from 20 patients were included. The mean age of participants was 65 ± 15 years and 13 (65%) were female. Thirteen (65%) fistulas were indirect and seven (35%) were direct. There was enlargement of at least one muscle in 11 (27.5%) orbits, and this was not correlated with the type of fistula (direct/indirect). The inferior rectus was most commonly enlarged in seven orbits (17.5%), followed by the medial rectus in five orbits (12.5%). Proptosis was found in 17 (43%) orbits and was more common ipsilateral to the fistula (58% ipsilateral group vs 19% contralateral group, p < .01). CONCLUSION: Extraocular muscle enlargement was observed in over one-fourth of CCFs. When enlarged, the inferior and medial rectus muscles are most commonly involved. These findings may help clinicians and radiologists when evaluating the CT or MRI scans of patients with suspected CCFs.


Asunto(s)
Fístula del Seno Cavernoso de la Carótida , Exoftalmia , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Músculos Oculomotores/diagnóstico por imagen , Músculos Oculomotores/patología , Estudios Retrospectivos , Fístula del Seno Cavernoso de la Carótida/diagnóstico por imagen , Fístula del Seno Cavernoso de la Carótida/terapia , Exoftalmia/diagnóstico por imagen , Exoftalmia/etiología , Órbita , Hipertrofia/patología
13.
J Neurosci ; 42(12): 2474-2491, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35149515

RESUMEN

In postmitotic neurons, several tumor suppressor genes (TSGs), including p53, Rb, and PTEN, modulate the axon regeneration success after injury. Particularly, PTEN inhibition is a key driver of successful CNS axon regeneration after optic nerve or spinal cord injury. In contrast, in peripheral neurons, TSG influence in neuronal morphology, physiology, and pathology has not been investigated to the same depth. In this study, we conditionally deleted PTEN from mouse facial motoneurons (Chat-Cre/PtenloxP/loxP ) and analyzed neuronal responses in vivo with or without peripheral facial nerve injury in male and female mice. In uninjured motoneurons, PTEN loss induced somatic, axonal, and nerve hypertrophy, synaptic terminal enlargement and reduction in physiological whisker movement. Despite these morphologic and physiological changes, PTEN deletion positively regulated facial nerve regeneration and recovery of whisker movement after nerve injury. Regenerating PTEN-deficient motoneurons upregulated P-CREB and a signaling pathway involving P-Akt, P-PRAS40, P-mTOR, and P-4EBP1. In aged mice (12 months), PTEN deletion induced hair loss and facial hyperplasia of the epidermis. This suggests a time window in younger mice with PTEN loss stimulating axon growth after injury, however, at the risk of hyperplasia formation at later time points in the old animal. Overall, our data highlight a dual TSG function with PTEN loss impairing physiological neuron function but furthermore underscoring the positive effects of PTEN ablation in axon regeneration also for the PNS.SIGNIFICANCE STATEMENT Tumor suppressor genes (TSGs) restrict cell proliferation and growth. TSG inhibition, including p53 and PTEN, stimulates axon regeneration after CNS injury. In contrast, in PNS axon regeneration, TSGs have not been analyzed in great depth. Herein we show enhanced peripheral axon regeneration after PTEN deletion from facial motoneurons. This invokes a signaling cascade with novel PTEN partners, including CREB and PRAS40. In adult mice, PTEN loss induces hyperplasia of the skin epidermis, suggesting detrimental consequences when reaching adulthood in contrast to a beneficial TSG role for regeneration in young adult mice. Thus, our data highlight the double-edged sword nature of interfering with TSG function.


Asunto(s)
Traumatismos del Nervio Facial , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Animales , Axones/fisiología , Traumatismos del Nervio Facial/genética , Traumatismos del Nervio Facial/patología , Femenino , Hiperplasia/patología , Hipertrofia/patología , Masculino , Ratones , Neuronas Motoras/metabolismo , Regeneración Nerviosa/genética , Proteína p53 Supresora de Tumor
14.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539452

RESUMEN

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Asunto(s)
Cardiopatías , Hipotiroidismo , Embarazo , Femenino , Ratones , Animales , Miocitos Cardíacos/metabolismo , Cardiopatías/patología , Hipertrofia/metabolismo , Hipertrofia/patología , Hipotiroidismo/complicaciones , Hipotiroidismo/metabolismo , Hipotiroidismo/patología , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Cardiomegalia/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 324(5): H675-H685, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930654

RESUMEN

Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-ß, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-ß (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-ß), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-ß) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.


Asunto(s)
Micropartículas Derivadas de Células , Insuficiencia Cardíaca , Hipertensión , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Troponina T/metabolismo , Óxido Nítrico/metabolismo , Actinina/metabolismo , Actinina/farmacología , FN-kappa B/metabolismo , Hipertensión/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Micropartículas Derivadas de Células/metabolismo , Obesidad/metabolismo , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis
16.
Cell Immunol ; 391-392: 104759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37689011

RESUMEN

BACKGROUND: Asthma is a common chronic respiratory disease characterized by airways inflammation, hyperresponsiveness and remodeling. IL-37, an anti-inflammatory cytokine, consists of five splice isoforms, that is, a-e. Although it has been previously shown that recombinant human IL-37b is able to inhibit airway inflammation and hyperresponsiveness in animal models of asthma, the effects and difference of other IL-37 isoforms, such as IL-37a on features of asthma are unknown. METHODS: Animal models of chronic asthma were established using IL-37a and IL-37b transgenic mice with C57BL/6J background and wild-type (WT) mice sensitized and nasally challenged with ovalbumin (OVA). Airway hyperresponsiveness was measured using FlexiVent apparatus, while histological and immunohistological stainings were employed to measure airways inflammation and remodeling indexes, including goblet cell metaplasia, mucus production, deposition of collagen, hypertrophy of airway smooth muscles and pulmonary angiogenesis. RESULTS: Compared to WT mice, both IL-37a and IL-37b transgenic mice had significant reduced airway hyperresponsiveness and the declined total numbers of inflammatory cells, predominant eosinophils into airways and lung tissues. Furthermore, all features of airways remodeling, including degrees of mucus expression, collagen deposition, hypertrophy of smooth muscles, thickness of airways and neovascularization markedly decreased in IL-37 transgenic mice compared with OVA-treated WT mice. CONCLUSION: Our data suggest that both IL-37a and IL-37b isoforms are able to not only ameliorate airways inflammation and airways hyperresponsiveness, but also greatly reduce airways structural changes of animal models of chronic asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Ratones , Humanos , Animales , Ovalbúmina , Ratones Transgénicos , Ratones Endogámicos C57BL , Asma/metabolismo , Pulmón/metabolismo , Inflamación/patología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Colágeno/efectos adversos , Colágeno/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Isoformas de Proteínas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Líquido del Lavado Bronquioalveolar
17.
Ann Surg Oncol ; 30(13): 7976-7985, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670120

RESUMEN

BACKGROUND: Portal vein embolization (PVE) is used to induce remnant liver hypertrophy prior to major hepatectomy. The purpose of this study was to evaluate the predictive value of baseline computed tomography (CT) data for future remnant liver (FRL) hypertrophy after PVE. METHODS: In this retrospective study, all consecutive patients undergoing right-sided PVE with or without hepatic vein embolization between 2018 and 2021 were included. CT volumetry was performed before and after PVE to assess standardized FRL volume (sFRLV). Radiomic features were extracted from baseline CT after segmenting liver (without tumor), spleen and bone marrow. For selecting features that allow classification of response (hypertrophy ≥ 1.33), a stepwise dimension reduction was performed. Logistic regression models were fitted and selected features were tested for their predictive value. Decision curve analysis was performed on the test dataset. RESULTS: A total of 53 patients with liver tumor were included in this study. sFRLV increased significantly after PVE, with a mean hypertrophy of FRL of 1.5 ± 0.3-fold. sFRLV hypertrophy ≥ 1.33 was reached in 35 (66%) patients. Three independent radiomic features, i.e. liver-, spleen- and bone marrow-associated, differentiated well between responders and non-responders. A logistic regression model revealed the highest accuracy (area under the curve 0.875) for the prediction of response, with sensitivity of 1.0 and specificity of 0.5. Decision curve analysis revealed a positive net benefit when applying the model. CONCLUSIONS: This proof-of-concept study provides first evidence of a potential predictive value of baseline multi-organ radiomics CT data for FRL hypertrophy after PVE.


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Vena Porta/patología , Estudios Retrospectivos , Hígado/cirugía , Hepatectomía/métodos , Neoplasias Hepáticas/cirugía , Hipertrofia/patología , Hipertrofia/cirugía , Resultado del Tratamiento
18.
Ophthalmology ; 130(3): 265-273, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36270406

RESUMEN

PURPOSE: To report the clinical and imaging findings of 4 patients with benign intraretinal tumors, 2 of which were associated with retinal pigment epithelium (RPE) hypertrophy. To our knowledge, this condition has not been described previously and should be distinguished from retinoblastoma and other malignant retinal neoplasms. DESIGN: Retrospective case series. PARTICIPANTS: Four patients from 3 institutions. METHODS: Four patients with intraretinal tumors of the inner nuclear layer (INL) underwent a combination of ophthalmic examination, fundus photography, fluorescein angiography, OCT, OCT angiography, and whole exome sequencing. MAIN OUTCOME MEASURES: Description of multimodal imaging findings and systemic findings from 4 patients with benign intraretinal tumors and whole exome studies from 3 patients. RESULTS: Six eyes of 4 patients 5, 13, 32, and 27 years of age were found to have white intraretinal tumors that remained stable over the follow-up period (range, 9 months-4 years). The tumors were unilateral in 2 patients and bilateral in 2 patients. The tumors were white, centered on the posterior pole, and multifocal, with some consisting of multiple lobules with arching extensions that extended beyond the central tumor mass. OCT demonstrated these lesions to be centered within the INL at the border of the inner plexiform layer. In addition, 2 patients demonstrated congenital hypertrophy of the RPE (CHRPE) lesions. Three of 4 patients underwent whole exome sequencing of the blood that revealed no candidate variants that plausibly could account for the phenotype. CONCLUSIONS: We characterize a novel benign tumor of the INL that, in 2 patients, was associated with separate CHRPE lesions. We propose the term benign lobular inner nuclear layer proliferation to describe these lesions. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Enfermedades de la Retina , Neoplasias de la Retina , Humanos , Epitelio Pigmentado de la Retina/patología , Estudios Retrospectivos , Retina/patología , Enfermedades de la Retina/diagnóstico , Neoplasias de la Retina/patología , Angiografía con Fluoresceína , Tomografía de Coherencia Óptica/métodos , Hipertrofia/congénito , Hipertrofia/patología
19.
Curr Opin Clin Nutr Metab Care ; 26(4): 323-329, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144457

RESUMEN

PURPOSE OF REVIEW: Heart failure is one of the major causes of death worldwide and continues to increase despite therapeutics and pharmacology advances. Fatty acids and glucose are used as ATP-producing fuels in heart to meet its energy demands. However, dysregulation of metabolites' use plays a pivotal role in cardiac diseases. How glucose becomes toxic or drives cardiac dysfunction is incompletely understood. In the present review, we summarize the recent findings on cardiac cellular and molecular events that are driven by glucose during pathologic conditions and potential therapeutic strategies to tackle hyperglycemia-mediated cardiac dysfunction. RECENT FINDINGS: Several studies have emerged recently, demonstrating that excessive glucose utilization has been correlated with impairment of cellular metabolic homeostasis primarily driven by mitochondrial dysfunction and damage, oxidative stress, and abnormal redox signaling. This disturbance is associated with cardiac remodeling, hypertrophy, and systolic and diastolic dysfunction. Both human and animal heart failure studies, report that glucose is a preferable fuel at the expense of fatty acid oxidation during ischemia and hypertrophy, but the opposite happens in diabetic hearts, which warrants further investigation. SUMMARY: A better understanding of glucose metabolism and its fate during distinct types of heart disease will contribute to developing novel therapeutic options for the prevention and treatment of heart failure.


Asunto(s)
Glucosa , Insuficiencia Cardíaca , Animales , Humanos , Glucosa/metabolismo , Metabolismo Energético , Miocardio/metabolismo , Miocardio/patología , Oxidación-Reducción , Insuficiencia Cardíaca/metabolismo , Ácidos Grasos/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología
20.
Arch Biochem Biophys ; 747: 109743, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696382

RESUMEN

BACKGROUND: Maladaptive right ventricular (RV) remodeling is the most important pathological feature of pulmonary hypertension (PH), involving processes such as myocardial hypertrophy and fibrosis. A growing number of studies have shown that mitochondria-associated endoplasmic reticulum membranes (MAMs) are involved in various physiological and pathological processes, such as calcium homeostasis, lipid metabolism, inflammatory response, mitochondrial dynamics, and autophagy/mitophagy. The abnormal expression of MAMs-related factors is closely related to the occurrence and development of heart-related diseases. However, the role of MAM-related factors in the maladaptive RV remodeling of PH rats remains unclear. METHODS AND RESULTS: We first obtained the transcriptome data of RV tissues from PH rats induced by Su5416 combined with hypoxia treatment (SuHx) from the Gene Expression Omnibus (GEO) database. The results showed that two MAMs-related genes (Opa1 and Mfn2) were significantly down-regulated in RV tissues of SuHx rats, accompanied by significant up-regulation of cardiac hypertrophy-related genes (such as Nppb and Myh7). Subsequently, using the SuHx-induced PH rat model, we found that the downregulation of mitochondrial fusion proteins Opa1 and Mfn2 may be involved in maladaptive RV remodeling by accelerating mitochondrial dysfunction. Finally, at the cellular level, we found that overexpression of Opa1 and Mfn2 could inhibit hypoxia-induced mitochondrial fission and reduce ROS production in H9c2 cardiomyocytes, thereby retarded the progression of cardiomyocyte hypertrophy. CONCLUSIONS: The down-regulation of mitochondrial fusion protein Opa1/Mfn2 can accelerate cardiomyocyte hypertrophy and then participate in maladaptive RV remodeling in SuHx-induced PH rats, which may be potential targets for preventing maladaptive RV remodeling.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Miocitos Cardíacos/metabolismo , Dinámicas Mitocondriales , Regulación hacia Abajo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Hidrolasas/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipertrofia/complicaciones , Hipertrofia/metabolismo , Hipertrofia/patología , Remodelación Ventricular , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA