Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.294
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002664, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829885

RESUMEN

Neuroscientists studying the neural correlates of mouse behavior often lack access to the brain-wide activity patterns elicited during a specific task of interest. Fortunately, large-scale imaging is becoming increasingly accessible thanks to modalities such as Ca2+ imaging and functional ultrasound (fUS). However, these and other techniques often involve challenging cranial window procedures and are difficult to combine with other neuroscience tools. We address this need with an open-source 3D-printable cranial implant-the COMBO (ChrOnic Multimodal imaging and Behavioral Observation) window. The COMBO window enables chronic imaging of large portions of the brain in head-fixed mice while preserving orofacial movements. We validate the COMBO window stability using both brain-wide fUS and multisite two-photon imaging. Moreover, we demonstrate how the COMBO window facilitates the combination of optogenetics, fUS, and electrophysiology in the same animals to study the effects of circuit perturbations at both the brain-wide and single-neuron level. Overall, the COMBO window provides a versatile solution for performing multimodal brain recordings in head-fixed mice.


Asunto(s)
Encéfalo , Optogenética , Animales , Ratones , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Optogenética/métodos , Neuronas/fisiología , Ratones Endogámicos C57BL , Cráneo/fisiología , Masculino , Conducta Animal/fisiología , Imagen Multimodal/métodos , Ultrasonografía/métodos , Impresión Tridimensional
2.
Circ Res ; 135(5): e114-e132, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38989585

RESUMEN

BACKGROUND: Atherosclerosis is a chronic inflammatory disease causing a fatal plaque rupture, and its key aspect is a failure to resolve inflammation. We hypothesize that macrophage-targeted near-infrared fluorescence emitting photoactivation could simultaneously assess macrophage/lipid-rich plaques in vivo and facilitate inflammation resolution. METHODS: We fabricated a Dectin-1-targeted photoactivatable theranostic agent through the chemical conjugation of the near-infrared fluorescence-emitting photosensitizer chlorin e6 and the Dectin-1 ligand laminarin (laminarin-chlorin e6 [LAM-Ce6]). Intravascular photoactivation by a customized fiber-based diffuser after administration of LAM-Ce6 effectively reduced inflammation in the targeted plaques of atherosclerotic rabbits in vivo as serially assessed by dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular catheter imaging after 4 weeks. RESULTS: The number of apoptotic macrophages peaked at 1 day after laser irradiation and then resolved until 4 weeks. Autophagy was strongly augmented 1 hour after the light therapy, with the formation of autophagolysosomes. LAM-Ce6 photoactivation increased the terminal deoxynucleotidyl transferase dUTP (deoxyuridine triphosphate) nick end labeling/RAM11 (rabbit monocyte/macrophage antibody)- and MerTK (c-Mer tyrosine kinase)-positive cells in the plaques, suggesting enhanced efferocytosis. In line with inflammation resolution, photoactivation reduced the plaque burden through fibrotic replacement via the TGF (transforming growth factor)-ß/CTGF (connective tissue growth factor) pathway. CONCLUSIONS: Optical coherence tomography-near-infrared fluorescence imaging-guided macrophage Dectin-1-targetable photoactivation could induce the transition of macrophage/lipid-rich plaques into collagen-rich lesions through autophagy-mediated inflammation resolution and TGF-ß-dependent fibrotic replacement. This novel strategy offers a new opportunity for the catheter-based theranostic strategy.


Asunto(s)
Clorofilidas , Imagen Multimodal , Fármacos Fotosensibilizantes , Placa Aterosclerótica , Porfirinas , Tomografía de Coherencia Óptica , Animales , Placa Aterosclerótica/diagnóstico por imagen , Conejos , Imagen Multimodal/métodos , Tomografía de Coherencia Óptica/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Macrófagos/metabolismo , Nanomedicina Teranóstica/métodos , Ratones , Masculino , Autofagia , Tirosina Quinasa c-Mer/metabolismo , Apoptosis
3.
Nat Methods ; 19(2): 242-254, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145319

RESUMEN

Despite advances in imaging, image-based vascular systems biology has remained challenging because blood vessel data are often available only from a single modality or at a given spatial scale, and cross-modality data are difficult to integrate. Therefore, there is an exigent need for a multimodality pipeline that enables ex vivo vascular imaging with magnetic resonance imaging, computed tomography and optical microscopy of the same sample, while permitting imaging with complementary contrast mechanisms from the whole-organ to endothelial cell spatial scales. To achieve this, we developed 'VascuViz'-an easy-to-use method for simultaneous three-dimensional imaging and visualization of the vascular microenvironment using magnetic resonance imaging, computed tomography and optical microscopy in the same intact, unsectioned tissue. The VascuViz workflow permits multimodal imaging with a single labeling step using commercial reagents and is compatible with diverse tissue types and protocols. VascuViz's interdisciplinary utility in conjunction with new data visualization approaches opens up new vistas in image-based vascular systems biology.


Asunto(s)
Encéfalo/irrigación sanguínea , Imagen Multimodal/métodos , Biología de Sistemas/métodos , Animales , Encéfalo/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Circulación Cerebrovascular , Medios de Contraste , Visualización de Datos , Femenino , Hemodinámica , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos , Tomografía Computarizada por Rayos X , Flujo de Trabajo
4.
Plant Physiol ; 195(3): 2428-2442, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38590143

RESUMEN

Despite lignin being a key component of wood, the dynamics of tracheid lignification are generally overlooked in xylogenesis studies, which hampers our understanding of environmental drivers and blurs the interpretation of isotopic and anatomical signals stored in tree rings. Here, we analyzed cell wall formation in silver fir (Abies alba Mill.) tracheids to determine if cell wall lignification lags behind secondary wall deposition. For this purpose, we applied a multimodal imaging approach combining transmitted light microscopy (TLM), confocal laser scanning microscopy (CLSM), and confocal Raman microspectroscopy (RMS) on anatomical sections of wood microcores collected in northeast France on 11 dates during the 2010 growing season. Wood autofluorescence after laser excitation at 405 and 488 nm associated with the RMS scattering of lignin and cellulose, respectively, which allowed identification of lignifying cells (cells showing lignified and nonlignified wall fractions at the same time) in CLSM images. The number of lignifying cells in CLSM images mirrored the number of wall-thickening birefringent cells in polarized TLM images, revealing highly synchronized kinetics for wall thickening and lignification (similar timings and durations at the cell level). CLSM images and RMS chemical maps revealed a substantial incorporation of lignin into the wall at early stages of secondary wall deposition. Our results show that most of the cellulose and lignin contained in the cell wall undergo concurrent periods of deposition. This suggests a strong synchronization between cellulose and lignin-related features in conifer tree-ring records, as they originated over highly overlapped time frames.


Asunto(s)
Abies , Pared Celular , Celulosa , Lignina , Microscopía Confocal , Lignina/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo , Abies/metabolismo , Madera/química , Madera/anatomía & histología , Imagen Multimodal/métodos , Espectrometría Raman/métodos
5.
Circ Res ; 132(10): 1387-1404, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167354

RESUMEN

Infection with SARS-CoV-2, the virus that causes COVID, is associated with numerous potential secondary complications. Global efforts have been dedicated to understanding the myriad potential cardiovascular sequelae which may occur during acute infection, convalescence, or recovery. Because patients often present with nonspecific symptoms and laboratory findings, cardiac imaging has emerged as an important tool for the discrimination of pulmonary and cardiovascular complications of this disease. The clinician investigating a potential COVID-related complication must account not only for the relative utility of various cardiac imaging modalities but also for the risk of infectious exposure to staff and other patients. Extraordinary clinical and scholarly efforts have brought the international medical community closer to a consensus on the appropriate indications for diagnostic cardiac imaging during this protracted pandemic. In this review, we summarize the existing literature and reference major societal guidelines to provide an overview of the indications and utility of echocardiography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance imaging for the diagnosis of cardiovascular complications of COVID.


Asunto(s)
COVID-19 , Cardiopatías , Humanos , SARS-CoV-2 , COVID-19/diagnóstico por imagen , COVID-19/complicaciones , Corazón , Cardiopatías/etiología , Imagen Multimodal/métodos , Imagen por Resonancia Magnética
6.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38884282

RESUMEN

Humanoid robots have been designed to look more and more like humans to meet social demands. How do people empathize humanoid robots who look the same as but are essentially different from humans? We addressed this issue by examining subjective feelings, electrophysiological activities, and functional magnetic resonance imaging signals during perception of pain and neutral expressions of faces that were recognized as patients or humanoid robots. We found that healthy adults reported deceased feelings of understanding and sharing of humanoid robots' compared to patients' pain. Moreover, humanoid robot (vs. patient) identities reduced long-latency electrophysiological responses and blood oxygenation level-dependent signals in the left temporoparietal junction in response to pain (vs. neutral) expressions. Furthermore, we showed evidence that humanoid robot identities inhibited a causal input from the right ventral lateral prefrontal cortex to the left temporoparietal junction, contrasting the opposite effect produced by patient identities. These results suggest a neural model of modulations of empathy by humanoid robot identity through interactions between the cognitive and affective empathy networks, which provides a neurocognitive basis for understanding human-robot interactions.


Asunto(s)
Mapeo Encefálico , Encéfalo , Empatía , Imagen por Resonancia Magnética , Robótica , Humanos , Empatía/fisiología , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen Multimodal/métodos , Electroencefalografía , Expresión Facial , Dolor/psicología , Dolor/diagnóstico por imagen , Dolor/fisiopatología
7.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38752981

RESUMEN

Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.


Asunto(s)
Trastorno Depresivo Mayor , Función Ejecutiva , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Adolescente , Función Ejecutiva/fisiología , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Neuroimagen/métodos , Cognición/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Mapeo Encefálico/métodos
8.
Chem Soc Rev ; 53(12): 6068-6099, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38738633

RESUMEN

Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.


Asunto(s)
Medios de Contraste , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Medios de Contraste/química , Animales , Imagen Multimodal/métodos , Imagen por Resonancia Magnética/métodos
9.
Circulation ; 148(16): 1271-1286, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37732422

RESUMEN

Advances in cancer therapeutics have led to dramatic improvements in survival, now inclusive of nearly 20 million patients and rising. However, cardiovascular toxicities associated with specific cancer therapeutics adversely affect the outcomes of patients with cancer. Advances in cardiovascular imaging have solidified the critical role for robust methods for detecting, monitoring, and prognosticating cardiac risk among patients with cancer. However, decentralized evaluations have led to a lack of consensus on the optimal uses of imaging in contemporary cancer treatment (eg, immunotherapy, targeted, or biological therapy) settings. Similarly, available isolated preclinical and clinical studies have provided incomplete insights into the effectiveness of multiple modalities for cardiovascular imaging in cancer care. The aims of this scientific statement are to define the current state of evidence for cardiovascular imaging in the cancer treatment and survivorship settings and to propose novel methodological approaches to inform the optimal application of cardiovascular imaging in future clinical trials and registries. We also propose an evidence-based integrated approach to the use of cardiovascular imaging in routine clinical settings. This scientific statement summarizes and clarifies available evidence while providing guidance on the optimal uses of multimodality cardiovascular imaging in the era of emerging anticancer therapies.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias , Estados Unidos , Humanos , American Heart Association , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Oncología Médica , Imagen Multimodal/métodos , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/terapia
10.
Neuroimage ; 285: 120485, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110045

RESUMEN

In recent years, deep learning approaches have gained significant attention in predicting brain disorders using neuroimaging data. However, conventional methods often rely on single-modality data and supervised models, which provide only a limited perspective of the intricacies of the highly complex brain. Moreover, the scarcity of accurate diagnostic labels in clinical settings hinders the applicability of the supervised models. To address these limitations, we propose a novel self-supervised framework for extracting multiple representations from multimodal neuroimaging data to enhance group inferences and enable analysis without resorting to labeled data during pre-training. Our approach leverages Deep InfoMax (DIM), a self-supervised methodology renowned for its efficacy in learning representations by estimating mutual information without the need for explicit labels. While DIM has shown promise in predicting brain disorders from single-modality MRI data, its potential for multimodal data remains untapped. This work extends DIM to multimodal neuroimaging data, allowing us to identify disorder-relevant brain regions and explore multimodal links. We present compelling evidence of the efficacy of our multimodal DIM analysis in uncovering disorder-relevant brain regions, including the hippocampus, caudate, insula, - and multimodal links with the thalamus, precuneus, and subthalamus hypothalamus. Our self-supervised representations demonstrate promising capabilities in predicting the presence of brain disorders across a spectrum of Alzheimer's phenotypes. Comparative evaluations against state-of-the-art unsupervised methods based on autoencoders, canonical correlation analysis, and supervised models highlight the superiority of our proposed method in achieving improved classification performance, capturing joint information, and interpretability capabilities. The computational efficiency of the decoder-free strategy enhances its practical utility, as it saves compute resources without compromising performance. This work offers a significant step forward in addressing the challenge of understanding multimodal links in complex brain disorders, with potential applications in neuroimaging research and clinical diagnosis.


Asunto(s)
Encefalopatías , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Imagen Multimodal/métodos
11.
Neuroimage ; 295: 120658, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810891

RESUMEN

PURPOSE: The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach. METHODS: 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole-brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic energy demands by incoming signals from distinct brain regions. RESULTS: Functional connectivity input explained a substantial part of metabolic demands but with pronounced regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segregated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic signaling. The metabolically-derived directionality of functional inputs further marked them as top-down predictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through metabolically informed network partitioning. CONCLUSIONS: Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic metabolism. The observed task- and age-related effects indicate promising future applications to characterize human brain function and clinical alterations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiología , Tomografía de Emisión de Positrones/métodos , Femenino , Persona de Mediana Edad , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Adulto Joven , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/metabolismo , Imagen Multimodal/métodos , Anciano , Sinapsis/fisiología , Sinapsis/metabolismo , Mapeo Encefálico/métodos , Conectoma/métodos
12.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740347

RESUMEN

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Neurotransmisores/metabolismo , Imagen Multimodal/métodos
13.
Neurobiol Dis ; 198: 106560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852751

RESUMEN

BACKGROUND: Impulse control disorders (ICD) in Parkinson's disease (PD) is highly multifactorial in etiology and has intricate neural mechanisms. Our multimodal neuroimaging study aimed to investigate the specific patterns of structure-function-neurotransmitter interactions underlying ICD. METHODS: Thirty PD patients with ICD (PD-ICD), 30 without ICD (PD-NICD) and 32 healthy controls (HCs) were recruited. Gyrification and perivascular spaces (PVS) were computed to capture the alternations of cortical surface morphology and glymphatic function. Seed-based functional connectivity (FC) were performed to identify the corresponding functional changes. Further, JuSpace toolbox were employed for cross-modal correlations to evaluate whether the spatial patterns of functional alterations in ICD patients were associated with specific neurotransmitter system. RESULTS: Compared to PD-NICD, PD-ICD patients showed hypogyrification and enlarged PVS volume fraction in the left orbitofrontal gyrus (OFG), as well as decreased FC between interhemispheric OFG. The interhemispheric OFG connectivity reduction was associated with spatial distribution of µ-opioid pathway (r = -0.186, p = 0.029, false discovery rate corrected). ICD severity was positively associated with the PVS volume fraction of left OFG (r = 0.422, p = 0.032). Furthermore, gyrification index (LGI) and percent PVS (pPVS) in OFG and their combined indicator showed good performance in differentiating PD-ICD from PD-NICD. CONCLUSIONS: Our findings indicated that the co-altered structure-function-neurotransmitter interactions of OFG might be involved in the pathogenesis of ICD.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Imagen por Resonancia Magnética , Imagen Multimodal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Trastornos Disruptivos, del Control de Impulso y de la Conducta/diagnóstico por imagen , Trastornos Disruptivos, del Control de Impulso y de la Conducta/patología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Anciano , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Neuroimagen/métodos , Neurotransmisores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
14.
Cancer Sci ; 115(10): 3415-3425, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39119927

RESUMEN

A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Glioblastoma , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Glioblastoma/patología , Estudios Retrospectivos , Imagen Multimodal/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Carga Tumoral , Anciano , Adulto , Planificación de la Radioterapia Asistida por Computador/métodos
15.
Mol Imaging ; 23: 15353508241245265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952398

RESUMEN

This meeting report summarizes a consultants meeting that was held at International Atomic Energy Agency Headquarters, Vienna, in July 2022 to provide an update on the development of multimodality imaging by combining nuclear medicine imaging agents with other nonradioactive molecular probes and/or biomedical imaging techniques.


Asunto(s)
Imagen Multimodal , Medicina Nuclear , Medicina Nuclear/métodos , Medicina Nuclear/tendencias , Imagen Multimodal/métodos , Humanos
16.
Eur J Neurosci ; 59(5): 874-933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38140883

RESUMEN

The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.


Asunto(s)
Trastornos de la Conciencia , Humanos , Trastornos de la Conciencia/fisiopatología , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/diagnóstico por imagen , Pronóstico , Electroencefalografía/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Imagen Multimodal/métodos , Neuroimagen/métodos
17.
Eur J Neurosci ; 60(3): 4169-4181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38779858

RESUMEN

Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Sustancia Gris , Imagen Multimodal , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Atrofia/patología , Anciano , Tomografía de Emisión de Positrones/métodos , Imagen Multimodal/métodos , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Amiloide/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos
18.
Anal Chem ; 96(29): 11869-11880, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38982936

RESUMEN

Multimodal imaging analyses of dosed tissue samples can provide more comprehensive insights into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multimodal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity coregistration with other higher-resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high-spatial resolution microscopy image. As a proof of concept, our multimodal workflow was applied to brain tissue extracted from a Sprague-Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models, including linear regression, partial least-squares regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then coregistered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess colocalization of corynantheidine with brain cells. Our study also provides insights into the different evaluation parameters to consider when utilizing image fusion for biological applications.


Asunto(s)
Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ratas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Flujo de Trabajo , Imagen Multimodal/métodos , Microscopía/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Inmunohistoquímica
19.
Hum Brain Mapp ; 45(8): e26704, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825988

RESUMEN

Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.


Asunto(s)
Carbolinas , Imagen de Difusión Tensora , Imagen Multimodal , Tomografía de Emisión de Positrones , Humanos , Imagen de Difusión Tensora/métodos , Masculino , Femenino , Anciano , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Carbolinas/farmacocinética , Imagen Multimodal/métodos , Apraxias/diagnóstico por imagen , Apraxias/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Proteínas tau/metabolismo , Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
20.
BMC Med ; 22(1): 271, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926881

RESUMEN

BACKGROUND: To evaluate the neurological alterations induced by Omicron infection, to compare brain changes in chronic insomnia with those in exacerbated chronic insomnia in Omicron patients, and to examine individuals without insomnia alongside those with new-onset insomnia. METHODS: In this study, a total of 135 participants were recruited between January 11 and May 4, 2023, including 26 patients with chronic insomnia without exacerbation, 24 patients with chronic insomnia with exacerbation, 40 patients with no sleep disorder, and 30 patients with new-onset insomnia after infection with Omicron (a total of 120 participants with different sleep statuses after infection), as well as 15 healthy controls who were never infected with Omicron. Neuropsychiatric data, clinical symptoms, and multimodal magnetic resonance imaging data were collected. The gray matter thickness and T1, T2, proton density, and perivascular space values were analyzed. Associations between changes in multimodal magnetic resonance imaging findings and neuropsychiatric data were evaluated with correlation analyses. RESULTS: Compared with healthy controls, gray matter thickness changes were similar in the patients who have and do not have a history of chronic insomnia groups after infection, including an increase in cortical thickness near the parietal lobe and a reduction in cortical thickness in the frontal, occipital, and medial brain regions. Analyses showed a reduced gray matter thickness in patients with chronic insomnia compared with those with an aggravation of chronic insomnia post-Omicron infection, and a reduction was found in the right medial orbitofrontal region (mean [SD], 2.38 [0.17] vs. 2.67 [0.29] mm; P < 0.001). In the subgroups of Omicron patients experiencing sleep deterioration, patients with a history of chronic insomnia whose insomnia symptoms worsened after infection displayed heightened medial orbitofrontal cortical thickness and increased proton density values in various brain regions. Conversely, patients with good sleep quality who experienced a new onset of insomnia after infection exhibited reduced cortical thickness in pericalcarine regions and decreased proton density values. In new-onset insomnia patients post-Omicron infection, the thickness in the right pericalcarine was negatively correlated with the Self-rating Anxiety Scale (r = - 0.538, P = 0.002, PFDR = 0.004) and Self-rating Depression Scale (r = - 0.406, P = 0.026, PFDR = 0.026) scores. CONCLUSIONS: These findings help us understand the pathophysiological mechanisms involved when Omicron invades the nervous system and induces various forms of insomnia after infection. In the future, we will continue to pay attention to the dynamic changes in the brain related to insomnia caused by Omicron infection.


Asunto(s)
COVID-19 , Imagen por Resonancia Magnética , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , COVID-19/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Calidad del Sueño , SARS-CoV-2 , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen Multimodal/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA