Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Integr Neurosci ; 17(3-4): 671-678, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30103345

RESUMEN

In vivo calcium imaging is a powerful tool used to record neuronal activity from living animals. For this purpose, two-photon excitation laser-scanning microscopy is commonly used because of the optical accessibility of deep tissues. In this study, we report that one-photon confocal scanning laser microscopy, when optimally tuned, is also applicable for in vivo calcium imaging from the superficial layer of the neocortex. By combining a Nipkow-disk confocal unit with a fluorescence stereo zoom microscope and a high numerical aperture objective, we succeeded in recording the fluorescence signal of individual cells at a depth of up to 160 µm in brain tissues, which corresponds to layer II of the mouse neocortex. In fact, we conducted in vivo functional multineuron calcium imaging and simultaneously recorded spontaneous activity from more than 100 neocortical layer II neurons. This one-photon confocal system provides a simple, low-cost experimental platform for time-lapse imaging from living animals.


Asunto(s)
Calcio/metabolismo , Microscopía Confocal/métodos , Neocórtex/metabolismo , Neuronas/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Astrocitos/citología , Astrocitos/metabolismo , Señalización del Calcio/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Microscopía Confocal/instrumentación , Neocórtex/citología , Neuronas/citología , Imagen de Colorante Sensible al Voltaje/instrumentación
2.
Am J Physiol Heart Circ Physiol ; 313(6): H1190-H1198, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939646

RESUMEN

With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments.NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive.


Asunto(s)
Potenciales de Acción , Corazón/fisiología , Preparación de Corazón Aislado/instrumentación , Poliésteres/química , Impresión Tridimensional , Imagen de Colorante Sensible al Voltaje/instrumentación , Animales , Estimulación Cardíaca Artificial , Diseño Asistido por Computadora , Análisis Costo-Beneficio , Electroencefalografía/instrumentación , Diseño de Equipo , Cobayas , Preparación de Corazón Aislado/economía , Masculino , Ensayo de Materiales , Marcapaso Artificial , Impresión Tridimensional/economía , Reproducibilidad de los Resultados , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje/economía
3.
Adv Exp Med Biol ; 859: 313-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238059

RESUMEN

There is very limited information regarding the dynamic patterns of the electrical activity during ventricular fibrillation (VF) in humans. Most of the data used to generate and test hypotheses regarding the mechanisms of VF come from animal models and computer simulations and the quantification of VF patterns is non-trivial. Many of the experimental recordings of the dynamic spatial patterns of VF have been obtained from mammals using "optical mapping" or "video imaging" technology in which "phase maps" are derived from high-resolution transmembrane recordings from the heart surface. The surface manifestation of the unstable reentrant waves sustaining VF can be identified as "phase singularities" and their number and location provide one measure of VF complexity. After providing a brief history of optical mapping of VF, we compare and contrast a quantitative analysis of VF patterns from the heart surface for four different animal models, hence providing physiological insight into the variety of VF dynamics among species. We found that in all four animal models the action potential duration restitution slope was actually negative during VF and that the spatial dispersion of electrophysiological parameters were not different during the first second of VF compared to pacing immediately before VF initiation. Surprisingly, our results suggest that APD restitution and spatial dispersion may not be essential causes of VF dynamics. Analyses of electrophysiological quantities in the four animal models are consistent with the idea that VF is essentially a two-dimensional phenomenon in small rabbit hearts whose size are near the boundary of the "critical mass" required to sustain VF, while VF in large pig hearts is three-dimensional and exhibits the maximal theoretical phase singularity density, and thus will not terminate spontaneously.


Asunto(s)
Potenciales de Acción/fisiología , Corazón/fisiopatología , Imagen Óptica/métodos , Fibrilación Ventricular/fisiopatología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Electrocardiografía/instrumentación , Imagen Óptica/instrumentación , Tamaño de los Órganos , Conejos , Especificidad de la Especie , Porcinos , Imagen de Colorante Sensible al Voltaje/instrumentación
4.
Adv Exp Med Biol ; 859: 27-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238048

RESUMEN

The chemistry and the physics of voltage sensitive dyes (VSDs) should be understood and appreciated as a prerequisite for their optimal application to problems in neuroscience cardiology. This chapter provides a basic understanding of the properties of the large variety of available organic VSDs. The mechanisms by which the dyes respond to voltage guides the best set up of the optics for recording or imaging electrophysiological activity. The physical and chemical properties of the dyes can be tuned to optimize delivery to and staining of the cells in different experimental preparations. The aim of this chapter is to arm the experimentalists who use the dyes with enough information and data to be able to intelligently choose the best dye for their specific requirements.


Asunto(s)
Espinas Dendríticas/fisiología , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Sondas Moleculares/química , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo/citología , Encéfalo/fisiología , Espinas Dendríticas/ultraestructura , Electrofisiología , Colorantes Fluorescentes/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Sondas Moleculares/síntesis química , Dispositivos Ópticos , Relación Estructura-Actividad , Imagen de Colorante Sensible al Voltaje/instrumentación
5.
Adv Exp Med Biol ; 859: 57-101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238049

RESUMEN

A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines.


Asunto(s)
Axones/fisiología , Espinas Dendríticas/fisiología , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Axones/ultraestructura , Bivalvos , Espinas Dendríticas/ultraestructura , Rayos Láser , Luz , Ratones , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje/instrumentación
6.
Adv Exp Med Biol ; 859: 127-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238051

RESUMEN

Optical recording with fast voltage sensitive dyes makes it possible, in suitable preparations, to simultaneously monitor the action potentials of large numbers of individual neurons. Here we describe methods for doing this, including considerations of different dyes and imaging systems, methods for correlating the optical signals with their source neurons, procedures for getting good signals, and the use of Independent Component Analysis for spike-sorting raw optical data into single neuron traces. These combined tools represent a powerful approach for large-scale recording of neural networks with high temporal and spatial resolution.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios de Invertebrados/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Colorantes Fluorescentes/química , Ganglios de Invertebrados/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Sanguijuelas , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Análisis Espacio-Temporal , Sinapsis/ultraestructura , Babosas Marinas Tritonia , Imagen de Colorante Sensible al Voltaje/instrumentación
7.
Adv Exp Med Biol ; 859: 149-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238052

RESUMEN

Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Ganglios de Invertebrados/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Ganglios de Invertebrados/ultraestructura , Ensayos Analíticos de Alto Rendimiento , Sanguijuelas , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Relación Señal-Ruido , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
8.
Adv Exp Med Biol ; 859: 171-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238053

RESUMEN

Voltage-sensitive dyes (VSDs) and optical imaging are useful tools for studying spatiotemporal patterns of population neuronal activity in cortex. Because fast VSDs respond to membrane potential changes with microsecond temporal resolution, these are better suited than calcium indicators for recording rapid neural signals. Here we describe methods for using a 464 element photodiode array and fast VSDs to record signals ranging from large scale network activity in brain slices and in vivo mammalian preparations with sensitivity comparable to local field potential (LFP) recordings. With careful control of dye bleaching and phototoxicity, long recording times can be achieved. Absorption dyes have less photo-toxicity than fluorescent dyes. In brain slices, the total recording time in each slice can be 1,000-2,000 s, which can be divided into hundreds of short recording trials over several hours. In intact brains when fluorescent dyes are used, reduced light intensity can also increase recording time. In this chapter, we will discuss technical details for the methods to achieve reliable VSD imaging with high sensitivity and long recording time.


Asunto(s)
Ondas Encefálicas/fisiología , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Neocórtex/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Microelectrodos , Microtomía , Neocórtex/ultraestructura , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Fotoblanqueo , Ratas , Relación Señal-Ruido , Análisis Espacio-Temporal , Técnicas Estereotáxicas , Sinapsis/fisiología , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
9.
Adv Exp Med Biol ; 859: 213-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238055

RESUMEN

The functional organization of the vertebrate central nervous system (CNS) during the early phase of development has long been unclear, because conventional electrophysiological means have several technical limitations. First, early embryonic neurons are small and fragile, and the application of microelectrodes is often difficult. Second, the simultaneous recording of electrical activity from multiple sites is limited, and as a consequence, response patterns of neural networks cannot be assessed. Optical recording techniques with voltage-sensitive dyes have overcome these obstacles and provided a new approach to the analysis of the functional development/organization of the CNS. In this review, we provide detailed information concerning the recording of optical signals in the embryonic nervous system. After outlining methodological considerations, we present examples of recent progress in optical studies on the embryonic nervous system with special emphasis on two topics. The first is the study of how synapse networks form in specific neuronal circuits. The second is the study of non-specific correlated wave activity, which is considered to play a fundamental role in neural development. These studies clearly demonstrate the utility of fast voltage-sensitive dye imaging as a powerful tool for elucidating the functional organization of the vertebrate embryonic CNS.


Asunto(s)
Sistema Nervioso Central/fisiología , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Ondas Encefálicas/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/ultraestructura , Embrión de Pollo , Embrión de Mamíferos , Ratones , Microelectrodos , Red Nerviosa/embriología , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Dispositivos Ópticos , Ratas , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
10.
Adv Exp Med Biol ; 859: 243-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238056

RESUMEN

Neural computations underlying sensory perception, cognition and motor control are performed by populations of neurons at different anatomical and temporal scales. Few techniques are currently available for exploring dynamics of local and large range populations. Voltage-sensitive dye imaging (VSDI) reveals neural population activity in areas ranging from a few tens of microns to a couple of centimeters, or two areas up to ~10 cm apart. VSDI provides a sub-millisecond temporal resolution, and a spatial resolution of about 50 µm. The dye signal emphasizes subthreshold synaptic potentials. VSDI has been applied in the mouse, rat, gerbil, ferret, tree shrew, cat and monkey cortices, in order to explore lateral spread of retinotopic or somatotopic activation, the dynamic spatiotemporal pattern resulting from sensory activation, including the somatosensory, olfactory, auditory, and visual modalities, as well as motor preparation and the properties of spontaneously-occurring population activity. In this chapter we focus on VSDI in-vivo and review results obtained mostly in the visual system in our laboratory.


Asunto(s)
Colorantes Fluorescentes/química , Neuronas/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Corteza Visual/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Ondas Encefálicas/fisiología , Potenciales Evocados Visuales/fisiología , Macaca , Microelectrodos , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Dispositivos Ópticos , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Análisis Espacio-Temporal , Sinapsis/ultraestructura , Corteza Visual/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
11.
Adv Exp Med Biol ; 859: 273-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238057

RESUMEN

The development of functional imaging techniques applicable to neuroscience and covering a wide range of spatial and temporal scales has greatly facilitated the exploration of the relationships between cognition, behaviour and electrical brain activity. For mammals, the neocortex plays a particularly profound role in generating sensory perception, controlling voluntary movement, higher cognitive functions and planning goal-directed behaviours. Since these remarkable functions of the neocortex cannot be explored in simple model preparations or in anesthetised animals, the neural basis of behaviour must be explored in awake behaving subjects. Because neocortical function is highly distributed across many rapidly interacting regions, it is essential to measure spatiotemporal dynamics of cortical activity in real-time. Extensive work in anesthetised mammals has shown that in vivo Voltage-Sensitive Dye Imaging (VSDI) reveals the neocortical population membrane potential dynamics at millisecond temporal resolution and subcolumnar spatial resolution. Here, we describe recent advances indicating that VSDI is also already well-developed for exploring cortical function in behaving monkeys and mice. The first animal model, the non-human primate, is well-suited for fundamental exploration of higher-level cognitive function and behavior. The second animal model, the mouse, benefits from a rich arsenal of molecular and genetic technologies. In the monkey, imaging from the same patch of cortex, repeatedly, is feasible for a long period of time, up to a year. In the rodent, VSDI is applicable to freely moving and awake head-restrained mice. Interactions between different cortical areas and different cortical columns can therefore now be dynamically mapped through VSDI and related to the corresponding behaviour. Thus by applying VSDI to mice and monkeys one can begin to explore how behaviour emerges from neuronal activity in neuronal networks residing in different cortical areas.


Asunto(s)
Colorantes Fluorescentes/química , Actividad Motora/fisiología , Neocórtex/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Mapeo Encefálico , Potenciales Evocados Visuales/fisiología , Macaca , Ratones , Microelectrodos , Neocórtex/ultraestructura , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Análisis Espacio-Temporal , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
12.
Adv Exp Med Biol ; 859: 299-311, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238058

RESUMEN

This chapter reviews the major milestones and scientific achievements facilitated by optical imaging of the action potential in the heart over more than four decades since its introduction. We discuss the limitations of this technique, which sometimes are not fully recognized; the unresolved issues, such as motion artifacts, and the newest developments and future directions.


Asunto(s)
Potenciales de Acción/fisiología , Artefactos , Corazón/fisiología , Imagen Óptica/métodos , Imagen de Colorante Sensible al Voltaje/métodos , Algoritmos , Animales , Colorantes Fluorescentes/química , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Imagen Óptica/instrumentación , Optogenética/instrumentación , Optogenética/métodos , Ovinos , Análisis Espacio-Temporal , Técnica de Sustracción , Imagen de Colorante Sensible al Voltaje/instrumentación
13.
Adv Exp Med Biol ; 859: 343-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238060

RESUMEN

Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation.


Asunto(s)
Cardioversión Eléctrica/métodos , Imagen Óptica/métodos , Fibrilación Ventricular/diagnóstico , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Cardioversión Eléctrica/instrumentación , Electrodos , Colorantes Fluorescentes/química , Corazón/fisiopatología , Humanos , Imagen Óptica/instrumentación , Interfaz Usuario-Computador , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/terapia , Imagen de Colorante Sensible al Voltaje/instrumentación
14.
Adv Exp Med Biol ; 859: 405-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238062

RESUMEN

The spatiotemporal dynamics of arrhythmias are likely to be complex three-dimensional phenomena. Yet, the lack of high-resolution three-dimensional imaging techniques, both in the clinic and the experimental lab, limits our ability to better understand the mechanisms of such arrhythmias. Optical mapping using voltage-sensitive dyes is a widely used tool in experimental electrophysiology. It has been known for decades that even in its most basic application, epi-fluorescence, the optical signal contains information from within a certain intramural volume. Understanding of this fundamental property of optical signals has paved the way towards novel three-dimensional optical imaging techniques. Here, we review our current understanding of the three-dimensional nature of optical signals; how penetration depths of cardiac optical imaging can be improved by using novel imaging modalities and finally, we highlight new techniques inspired from optical tomography and aiming at full depth-resolved optical mapping of cardiac electrical activity.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Sistema de Conducción Cardíaco/fisiopatología , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Imagen de Colorante Sensible al Voltaje/métodos , Potenciales de Acción , Animales , Arritmias Cardíacas/fisiopatología , Colorantes Fluorescentes , Humanos , Imagenología Tridimensional/instrumentación , Microscopía Fluorescente/instrumentación , Miocardio/patología , Tomografía Óptica/instrumentación , Tomografía Óptica/métodos , Imagen de Colorante Sensible al Voltaje/instrumentación
15.
Adv Exp Med Biol ; 859: 473-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238065

RESUMEN

The non-linear optical effect known as second harmonic generation (SHG) has been recognized since the earliest days of the laser. But it has only been in the last 20 years that it has begun to emerge as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function. This is because only small modifications are required to equip a standard laser scanning 2-photon microscope for second harmonic imaging microscopy (SHIM). SHG signals from certain membrane-bound dyes are highly sensitive to membrane potential, indicating that SHIM may become a valuable probe of cell physiology. However, for the current generation of dyes and microscopes, the small signal size limits the number of photons that can be collected during the course of a fast action potential. Better dyes and optimized microscope optics could ultimately lead to the ability to image neuronal electrical activity with SHIM.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Colorantes Fluorescentes/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo/ultraestructura , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Humanos , Cinética , Ratones , Microscopía Confocal/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microtomía , Neuronas/ultraestructura , Relación Estructura-Actividad , Imagen de Colorante Sensible al Voltaje/instrumentación
16.
Adv Exp Med Biol ; 859: 3-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238047

RESUMEN

Voltage imaging was first conceived in the late 1960s and efforts to find better organic voltage sensitive dyes began in the 1970s and continue until today. At the beginning it was difficult to measure an action potential signal from a squid giant axon in a single trial. Now it is possible to measure the action potential in an individual spine. Other chapters will discuss advances in voltage imaging technology and applications in a variety of biological preparations. The development of genetically encoded voltage sensors has started. A genetically encoded sensor could provide cell type specific expression and voltage recording (see Chap. 20). Optimizing the signal-to-noise ratio of an optical recording requires attention to several aspects of the recording apparatus. These include the light source, the optics and the recording device. All three have improved substantially in recent years. Arc lamp, LED, and laser sources are now stable, more powerful, and less expensive. Cameras for recording activity have frames rates above 1 kHz and quantum efficiencies near 1.0 although they remain expensive. The sources of noise in optical recordings are well understood. Both the apparatus and the noise sources are discussed in this chapter.


Asunto(s)
Electrofisiología/métodos , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Técnicas Biosensibles , Encéfalo/citología , Encéfalo/fisiología , Decapodiformes , Electrofisiología/historia , Electrofisiología/instrumentación , Colorantes Fluorescentes/síntesis química , Genes Reporteros , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Luz , Neuronas/citología , Dispositivos Ópticos/historia , Relación Señal-Ruido , Imagen de Colorante Sensible al Voltaje/historia , Imagen de Colorante Sensible al Voltaje/instrumentación
17.
Adv Exp Med Biol ; 859: 103-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238050

RESUMEN

Membrane potential imaging using voltage-sensitive dyes can be combined with other optical techniques for a variety of applications. Combining voltage imaging with Ca2+ imaging allows correlating membrane potential changes with intracellular Ca2+ signals or with Ca2+ currents. Combining voltage imaging with uncaging techniques allows analyzing electrical signals elicited by photorelease of a particular molecule. This approach is also a useful tool to calibrate the change in fluorescence intensity in terms of membrane potential changes from different sites permitting spatial mapping of electrical activity. Finally, combining voltage imaging with optogenetics, in particular with channelrhodopsin stimulation, opens the gate to novel investigations of brain circuitries by allowing measurements of synaptic signals mediated by specific sets of neurons. Here we describe in detail the methods of membrane potential imaging in combination with other optical techniques and discus some important applications.


Asunto(s)
Señalización del Calcio/fisiología , Colorantes Fluorescentes/química , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Channelrhodopsins , Ácido Glutámico/metabolismo , Ratones , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Optogenética/instrumentación , Optogenética/métodos , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación , Imagen de Colorante Sensible al Voltaje/métodos
18.
Adv Exp Med Biol ; 859: 197-211, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238054

RESUMEN

Synaptic plasticity has the capacity to alter the function of neural circuits, and long-term potentiation (LTP) of synaptic transmission induced by high frequency electrical activity has the capacity to store information in neural circuits. The cellular and molecular mechanisms of LTP have been studied intensively for many years and much progress has been made on this front. By contrast, how synaptic plasticity alters circuit function has received much less attention and remains poorly understood. Voltage imaging provides a powerful general technique for the study of neural circuitry, and studies of synaptic plasticity with voltage imaging are beginning to reveal important aspects of how the function of a neural circuit can change when the strength of its synapses has been modified. The hippocampus has an important role in learning and memory and the plasticity of its synapses has received much attention. Voltage imaging with voltage sensitive dye in the CA1 region of a hippocampal slice has shown that spatial patterns of enhancement following LTP induction can diverge from the spatial patterns elicited by electrical stimulation, suggesting that LTP exhibits a distinct organizational structure. LTP can alter the throughput of electrical activity in the dentate gyrus of a hippocampal slice, to gate transmission on to the CA3 region. The spatial patterns evoked by complex electrical stimulation can be stored within the CA3 region in a hippocampal slice, allowing patterns to be reconstructed with simpler electrical stimulation. Thus, voltage imaging has demonstrated that the CA3 circuit has the capacity for pattern completion. These studies with voltage sensitive dye illustrate a range of interesting and novel questions that can be addressed at the population level. It is hoped that future imaging experiments with single-cell resolution using genetically-encoded voltage sensors will provide a more detailed picture of how synaptic plasticity modifies the information processing capabilities of neural circuits.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Colorantes Fluorescentes/química , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Región CA1 Hipocampal/ultraestructura , Región CA3 Hipocampal/ultraestructura , Estimulación Encefálica Profunda , Giro Dentado/ultraestructura , Potenciales de la Membrana/fisiología , Microtomía , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Ratas , Análisis Espacio-Temporal , Sinapsis/fisiología , Sinapsis/ultraestructura , Transmisión Sináptica , Imagen de Colorante Sensible al Voltaje/instrumentación
19.
Adv Exp Med Biol ; 859: 427-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238063

RESUMEN

Functional imaging microscopy based on voltage-sensitive dyes (VSDs) has proven effective for revealing spatio-temporal patterns of activity in vivo and in vitro. Microscopy based on two-photon excitation of fluorescent VSDs offers the possibility of recording sub-millisecond membrane potential changes on micron length scales in cells that lie upwards of one millimeter below the brain's surface. Here we describe progress in monitoring membrane voltage using two-photon excitation (TPE) of VSD fluorescence, and detail an application of this emerging technology in which action potentials were recorded in single trials from individual mammalian nerve terminals in situ. Prospects for, and limitations of this method are reviewed.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Evocados Motores/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen Óptica/métodos , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Estimulación Eléctrica , Colorantes Fluorescentes/química , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Neuronas/fisiología , Neuronas/ultraestructura , Imagen Óptica/instrumentación , Neurohipófisis/fisiología , Neurohipófisis/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Imagen de Colorante Sensible al Voltaje/instrumentación
20.
Adv Exp Med Biol ; 859: 455-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238064

RESUMEN

Studies in several important areas of neuroscience, including analysis of single neurons as well as neural networks, continue to be limited by currently available experimental tools. By combining molecular probes of cellular function, such as voltage-sensitive or calcium-sensitive dyes, with advanced microscopy techniques such as multiphoton microscopy, experimental neurophysiologists have been able to partially reduce this limitation. These approaches usually provide the needed spatial resolution along with convenient optical sectioning capabilities for isolating regions of interest. However, they often fall short in providing the necessary temporal resolution, primarily due to their restrained laser scanning mechanisms. In this regard, we review a method of laser scanning for multiphoton microscopy that overcomes the temporal limitations of pervious approaches and allows for what is known as 3D Random Access Multiphoton (3D RAMP) microscopy, an imaging technique that supports full three dimensional recording of many sites of interest on physiologically relevant time scales.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/fisiología , Imagen Óptica/métodos , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Calcio/metabolismo , Colorantes Fluorescentes/química , Hipocampo/fisiología , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Imagen Óptica/instrumentación , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA