RESUMEN
NLRP3 is an intracellular sensor protein that when activated by a broad spectrum of exogenous and endogenous stimuli leads to inflammasome formation and pyroptosis1,2. The conformational states of NLRP3 and the way antagonistic small molecules act at the molecular level remain poorly understood2,3. Here we report the cryo-electron microscopy structures of full-length human NLRP3 in its native form and complexed with the inhibitor CRID3 (also named MCC950)4. Inactive, ADP-bound NLRP3 is a decamer composed of homodimers of intertwined leucine-rich repeat (LRR) domains that assemble back-to-back as pentamers. The NACHT domain is located at the apical axis of this spherical structure. One pyrin domain dimer is in addition formed inside the LRR cage. Molecular contacts between the concave sites of two opposing LRR domains are mediated by an acidic loop that extends from an LRR transition segment. Binding of CRID3 considerably stabilizes the NACHT and LRR domains relative to each other. CRID3 binds into a cleft, connecting four subdomains of the NACHT with the transition LRR. Its central sulfonylurea group interacts with the Walker A motif of the NLRP3 nucleotide-binding domain and is sandwiched between two arginine residues, which explains the specificity of NLRP3 for this chemical entity. With the determination of the binding site of this key therapeutic agent, specific targeting of NLRP3 for the treatment of autoinflammatory and autoimmune diseases and rational drug optimization is within reach.
Asunto(s)
Furanos , Indenos , Proteína con Dominio Pirina 3 de la Familia NLR , Sulfonamidas , Microscopía por Crioelectrón , Furanos/química , Humanos , Indenos/química , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/química , Conformación Proteica , Sulfonamidas/químicaRESUMEN
BACKGROUND: Belzutifan, a hypoxia-inducible factor 2α inhibitor, showed clinical activity in clear-cell renal-cell carcinoma in early-phase studies. METHODS: In a phase 3, multicenter, open-label, active-controlled trial, we enrolled participants with advanced clear-cell renal-cell carcinoma who had previously received immune checkpoint and antiangiogenic therapies and randomly assigned them, in a 1:1 ratio, to receive 120 mg of belzutifan or 10 mg of everolimus orally once daily until disease progression or unacceptable toxic effects occurred. The dual primary end points were progression-free survival and overall survival. The key secondary end point was the occurrence of an objective response (a confirmed complete or partial response). RESULTS: A total of 374 participants were assigned to belzutifan, and 372 to everolimus. At the first interim analysis (median follow-up, 18.4 months), the median progression-free survival was 5.6 months in both groups; at 18 months, 24.0% of the participants in the belzutifan group and 8.3% in the everolimus group were alive and free of progression (two-sided P = 0.002, which met the prespecified significance criterion). A confirmed objective response occurred in 21.9% of the participants (95% confidence interval [CI], 17.8 to 26.5) in the belzutifan group and in 3.5% (95% CI, 1.9 to 5.9) in the everolimus group (P<0.001, which met the prespecified significance criterion). At the second interim analysis (median follow-up, 25.7 months), the median overall survival was 21.4 months in the belzutifan group and 18.1 months in the everolimus group; at 18 months, 55.2% and 50.6% of the participants, respectively, were alive (hazard ratio for death, 0.88; 95% CI, 0.73 to 1.07; two-sided P = 0.20, which did not meet the prespecified significance criterion). Grade 3 or higher adverse events of any cause occurred in 61.8% of the participants in the belzutifan group (grade 5 in 3.5%) and in 62.5% in the everolimus group (grade 5 in 5.3%). Adverse events led to discontinuation of treatment in 5.9% and 14.7% of the participants, respectively. CONCLUSIONS: Belzutifan showed a significant benefit over everolimus with respect to progression-free survival and objective response in participants with advanced clear-cell renal-cell carcinoma who had previously received immune checkpoint and antiangiogenic therapies. Belzutifan was associated with no new safety signals. (Funded by Merck Sharp and Dohme, a subsidiary of Merck; LITESPARK-005 ClinicalTrials.gov number, NCT04195750.).
Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Everolimus , Indenos , Neoplasias Renales , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/mortalidad , Everolimus/administración & dosificación , Everolimus/efectos adversos , Estimación de Kaplan-Meier , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/mortalidad , Supervivencia sin Progresión , Indenos/administración & dosificación , Indenos/efectos adversos , Administración Oral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Adulto Joven , Resultado del TratamientoRESUMEN
Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-L-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1-4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and L-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions-Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.
Asunto(s)
Amidas/metabolismo , Ligasas/química , Ligasas/metabolismo , Amidas/química , Aminoácidos/biosíntesis , Aminoácidos/química , Azospirillum lipoferum/enzimología , Azospirillum lipoferum/genética , Ácidos Carboxílicos/metabolismo , Ciclopentanos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Indenos/química , Isoleucina/análogos & derivados , Isoleucina/biosíntesis , Isoleucina/química , Cinética , Modelos Moleculares , Pectobacterium/enzimología , Pectobacterium/genética , Pseudomonas syringae/enzimología , Pseudomonas syringae/genéticaRESUMEN
Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin ß family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.
Asunto(s)
Ácido Abscísico , Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Indenos , Estomas de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estomas de Plantas/fisiología , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácido Abscísico/metabolismo , Indenos/metabolismo , Indenos/farmacología , Aminoácidos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Núcleo Celular/metabolismo , Fosfoproteínas FosfatasasRESUMEN
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Asunto(s)
Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Proteínas de Unión al GTP Heterotriméricas , Indenos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Enfermedades de las Plantas/genéticaRESUMEN
Lodging restricts growth, development, and yield formation in maize (Zea mays L.). Shorter internode length is beneficial for lodging tolerance. However, although brassinosteroids (BRs) and jasmonic acid (JA) are known to antagonistically regulate internode growth, the underlying molecular mechanism is still unclear. In this study, application of the JA mimic coronatine (COR) inhibited basal internode elongation at the jointing stage and repressed expression of the cell wall-related gene XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 1 (ZmXTH1), whose overexpression in maize plants promoted internode elongation. We demonstrated that the basic helix-loop-helix (bHLH) transcription factor ZmbHLH154 directly binds to the ZmXTH1 promoter and induces its expression, whereas the bHLH transcription factor ILI1 BINDING BHLH 1 (ZmIBH1) inhibits this transcriptional activation by forming a heterodimer with ZmbHLH154. Overexpressing ZmbHLH154 led to longer internodes, whereas zmbhlh154 mutants had shorter internodes than the wild type. The core JA-dependent transcription factors ZmMYC2-4 and ZmMYC2-6 interacted with BRASSINAZOLE RESISTANT 1 (ZmBZR1), a key factor in BR signaling, and these interactions eliminated the inhibitory effect of ZmBZR1 on its downstream gene ZmIBH1. Collectively, these results reveal a signaling module in which JA regulates a bHLH network by attenuating BR signaling to inhibit ZmXTH1 expression, thereby regulating cell elongation in maize.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Brasinoesteroides , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Transducción de Señal , Zea mays , Brasinoesteroides/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Zea mays/genética , Zea mays/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Indenos/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , AminoácidosRESUMEN
NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.
Asunto(s)
Apoptosis , Autofagia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Células Fotorreceptoras de Vertebrados , Sulfonamidas , Animales , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Óxidos S-Cíclicos/farmacología , Células Ependimogliales/metabolismo , Células Ependimogliales/efectos de los fármacos , Furanos/farmacología , Hipoxia/metabolismo , Indenos/farmacología , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonas/farmacologíaRESUMEN
Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.
Asunto(s)
Apoptosis , Furanos , Inflamación , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , Piroptosis , Sulfonamidas , Piroptosis/efectos de los fármacos , Animales , Ratones , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/farmacología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Masculino , Furanos/farmacología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Indenos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , para-Aminobenzoatos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Modelos Animales de Enfermedad , Miocardio/metabolismo , Miocardio/patología , Hipoxia/metabolismo , Hipoxia/complicaciones , DipéptidosRESUMEN
The human MT1 and MT2 melatonin receptors1,2 are G-protein-coupled receptors (GPCRs) that help to regulate circadian rhythm and sleep patterns3. Drug development efforts have targeted both receptors for the treatment of insomnia, circadian rhythm and mood disorders, and cancer3, and MT2 has also been implicated in type 2 diabetes4,5. Here we report X-ray free electron laser (XFEL) structures of the human MT2 receptor in complex with the agonists 2-phenylmelatonin (2-PMT) and ramelteon6 at resolutions of 2.8 Å and 3.3 Å, respectively, along with two structures of function-related mutants: H2085.46A (superscripts represent the Ballesteros-Weinstein residue numbering nomenclature7) and N862.50D, obtained in complex with 2-PMT. Comparison of the structures of MT2 with a published structure8 of MT1 reveals that, despite conservation of the orthosteric ligand-binding site residues, there are notable conformational variations as well as differences in [3H]melatonin dissociation kinetics that provide insights into the selectivity between melatonin receptor subtypes. A membrane-buried lateral ligand entry channel is observed in both MT1 and MT2, but in addition the MT2 structures reveal a narrow opening towards the solvent in the extracellular part of the receptor. We provide functional and kinetic data that support a prominent role for intramembrane ligand entry in both receptors, and suggest that there might also be an extracellular entry path in MT2. Our findings contribute to a molecular understanding of melatonin receptor subtype selectivity and ligand access modes, which are essential for the design of highly selective melatonin tool compounds and therapeutic agents.
Asunto(s)
Electrones , Rayos Láser , Modelos Moleculares , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/metabolismo , Cristalización , Diabetes Mellitus Tipo 2/genética , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.
Asunto(s)
Electrones , Rayos Láser , Modelos Moleculares , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Secuencia de Aminoácidos , Antidepresivos/química , Antidepresivos/metabolismo , Cristalización , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Simulación del Acoplamiento Molecular , Mutación , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/genética , Receptor de Serotonina 5-HT2C/química , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.
Asunto(s)
Hepatocitos , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Piroptosis , Factores de Transcripción , Animales , Humanos , Masculino , Ratones , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Hígado Graso/metabolismo , Hígado Graso/patología , Furanos , Gasderminas , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos/farmacología , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Nucleares , Ácido Palmítico/farmacología , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Piroptosis/efectos de los fármacos , Sulfonamidas/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
OBJECTIVE: Alcohol use in metabolic dysfunction-associated steatohepatitis (MASH) is associated with an increased risk of fibrosis and liver-related death. Here, we aimed to identify a mechanism through which repeated alcohol binges exacerbate liver injury in a high fat-cholesterol-sugar diet (MASH diet)-induced model of MASH. DESIGN: C57BL/6 mice received either chow or the MASH diet for 3 months with or without weekly alcohol binges. Neutrophil infiltration, neutrophil extracellular traps (NETs) and fibrosis were evaluated. RESULTS: We found that alcohol binges in MASH increase liver injury and fibrosis. Liver transcriptomic profiling revealed differential expression of genes involved in extracellular matrix reorganisation, neutrophil activation and inflammation compared with alcohol or the MASH diet alone. Alcohol binges specifically increased NET formation in MASH livers in mice, and NETs were also increased in human livers with MASH plus alcohol use. We discovered that cell-free NETs are sensed via Nod-like receptor protein 3 (NLRP3). Furthermore, we show that cell-free NETs in vitro induce a profibrotic phenotype in hepatic stellate cells (HSCs) and proinflammatory monocytes. In vivo, neutrophil depletion using anti-Ly6G antibody or NET disruption with deoxyribonuclease treatment abrogated monocyte and HSC activation and ameliorated liver damage and fibrosis. In vivo, inhibition of NLRP3 using MCC950 or NLRP3 deficiency attenuated NET formation, liver injury and fibrosis in MASH plus alcohol diet-fed mice (graphical abstract). CONCLUSION: Alcohol binges promote liver fibrosis via NET-induced activation of HSCs and monocytes in MASH. Our study highlights the potential of inhibition of NETs and/or NLRP3, as novel therapeutic strategies to combat the profibrotic effects of alcohol in MASH.
Asunto(s)
Trampas Extracelulares , Células Estrelladas Hepáticas , Monocitos , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Etanol , Trampas Extracelulares/metabolismo , Furanos/farmacología , Células Estrelladas Hepáticas/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neutrófilos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sulfonamidas/farmacología , Sulfonas/farmacologíaRESUMEN
Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 µmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA3) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.
Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas , Reguladores del Crecimiento de las Plantas , Semillas , Zea mays , Germinación/genética , Germinación/efectos de los fármacos , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Aminoácidos/metabolismo , Indenos/farmacología , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transducción de SeñalRESUMEN
BACKGROUND: Patients with von Hippel-Lindau (VHL) disease have a high incidence of renal cell carcinoma owing to VHL gene inactivation and constitutive activation of the transcription factor hypoxia-inducible factor 2α (HIF-2α). METHODS: In this phase 2, open-label, single-group trial, we investigated the efficacy and safety of the HIF-2α inhibitor belzutifan (MK-6482, previously called PT2977), administered orally at a dose of 120 mg daily, in patients with renal cell carcinoma associated with VHL disease. The primary end point was objective response (complete or partial response) as measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1, by an independent central radiology review committee. We also assessed responses to belzutifan in patients with non-renal cell carcinoma neoplasms and the safety of belzutifan. RESULTS: After a median follow-up of 21.8 months (range, 20.2 to 30.1), the percentage of patients with renal cell carcinoma who had an objective response was 49% (95% confidence interval, 36 to 62). Responses were also observed in patients with pancreatic lesions (47 of 61 patients [77%]) and central nervous system hemangioblastomas (15 of 50 patients [30%]). Among the 16 eyes that could be evaluated in 12 patients with retinal hemangioblastomas at baseline, all (100%) were graded as showing improvement. The most common adverse events were anemia (in 90% of the patients) and fatigue (in 66%). Seven patients discontinued treatment: four patients voluntarily discontinued, one discontinued owing to a treatment-related adverse event (grade 1 dizziness), one discontinued because of disease progression as assessed by the investigator, and one patient died (of acute toxic effects of fentanyl). CONCLUSIONS: Belzutifan was associated with predominantly grade 1 and 2 adverse events and showed activity in patients with renal cell carcinomas and non-renal cell carcinoma neoplasms associated with VHL disease. (Funded by Merck Sharp and Dohme and others; MK-6482-004 ClinicalTrials.gov number, NCT03401788.).
Asunto(s)
Antineoplásicos/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Carcinoma de Células Renales/tratamiento farmacológico , Indenos/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/complicaciones , Adulto , Edad de Inicio , Anciano , Anemia/inducido químicamente , Antineoplásicos/efectos adversos , Carcinoma de Células Renales/etiología , Progresión de la Enfermedad , Fatiga/inducido químicamente , Femenino , Estudios de Seguimiento , Hemangioblastoma/tratamiento farmacológico , Humanos , Indenos/efectos adversos , Neoplasias Renales/etiología , Masculino , Persona de Mediana Edad , Neoplasias Primarias Múltiples/tratamiento farmacológico , Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/genéticaRESUMEN
The integration of genomic testing into clinical care enables the use of individualized approaches to the management of rare diseases. We describe the use of belzutifan, a potent and selective small-molecule inhibitor of the protein hypoxia-inducible factor 2α (HIF2α), in a patient with polycythemia and multiple paragangliomas (the Pacak-Zhuang syndrome). The syndrome was caused in this patient by somatic mosaicism for an activating mutation in EPAS1. Treatment with belzutifan led to a rapid and sustained tumor response along with resolution of hypertension, headaches, and long-standing polycythemia. This case shows the application of a targeted therapy for the treatment of a patient with a rare tumor-predisposition syndrome. (Funded by the Morin Family Fund for Pediatric Cancer and Alex's Lemonade Stand Foundation.).
Asunto(s)
Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Indenos/uso terapéutico , Paraganglioma/tratamiento farmacológico , Policitemia/tratamiento farmacológico , Adolescente , Neoplasias de las Glándulas Suprarrenales/genética , Glándulas Suprarrenales/diagnóstico por imagen , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores/sangre , Cromograninas/sangre , Femenino , Mutación con Ganancia de Función , Humanos , Indenos/efectos adversos , Imagen por Resonancia Magnética , Normetanefrina/sangre , Paraganglioma/genética , Policitemia/genética , Transducción de Señal , Síndrome , Secuenciación Completa del GenomaRESUMEN
Hepatitis E virus (HEV) is a foodborne zoonotic pathogen that is supposed to be one of the most common causes of acute viral hepatitis. However, HEV infection has been recently associated with a wide spectrum of extrahepatic manifestations, particularly neurological disorders. Previous studies have shown that HEV is able to cross the blood-brain barrier (BBB) and induce inflammatory response of the central nervous system. However, the pathogenesis of HEV-induced neuroinflammation and tissue injury of the central nervous system have yet to be fully elucidated. In this study, activation of NLRP3 inflammasome following HEV infection were investigated. In a gerbil model infected by HEV, brain histopathological changes including gliosis, neuronophagia and neuron injury were observed and expression of NLRP3, caspase-1, IL-1ß and IL-18 were elevated. Brain microvascular endothelial cells (BMECs) are key components of the BBB that protects the brain from various challenges. Following HEV infection, virus-like particles range from 30 to 40 nm in diameter were observed in human BMECs (hBMECs). Enhanced expression levels of NLRP3 and subsequent ASC, caspase-1, IL-1ß and IL-18 were detected in infected cells. Treatment with MCC950 alleviated HEV infection induced activation of NLRP3 inflammasome, mitochondrial damage and VE-cadherin degradation. The findings provide new insights into HEV-associated neuroinflammation. Moreover, targeting NLRP3 inflammasome signalling is a promising therapeutic in HEV-induced neurological disorder.
Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Células Endoteliales , Gerbillinae , Virus de la Hepatitis E , Hepatitis E , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Virus de la Hepatitis E/inmunología , Virus de la Hepatitis E/fisiología , Enfermedades Neuroinflamatorias/virología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inmunología , Hepatitis E/virología , Hepatitis E/patología , Hepatitis E/complicaciones , Hepatitis E/inmunología , Células Endoteliales/virología , Encéfalo/patología , Encéfalo/virología , Humanos , Barrera Hematoencefálica/virología , Sulfonas/farmacología , Indenos , Furanos/farmacología , Sulfonamidas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Interleucina-1beta/metabolismo , Interleucina-18/metabolismoRESUMEN
BACKGROUND: Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a prevalent condition that has been associated with various forms of cancer. Although some clinical studies suggest a potential link between OSA and lung cancer, this association remains uncertain, and the underlying mechanisms are not fully understood. This study investigated the role of the catecholamine-ß-adrenergic receptor (ßAR) and the NLRP3 inflammasome in mediating the effects of CIH on lung cancer progression in mice. METHODS: Male C57BL/6 N mice were subjected to CIH for four weeks, with Lewis lung carcinoma cells seeded subcutaneously. Propranolol (a ßAR blocker) or nepicastat (an inhibitor of catecholamine production) was administered during this period. Tumor volume and tail artery blood pressure were monitored. Immunohistochemical staining and immunofluorescence staining were employed to assess protein expression of Ki-67, CD31, VEGFR2, PD-1, PD-L1, and ASC specks in tumor tissues. ELISA was used to detect catecholamine and various cytokines, while western blot assessed the expression of cyclin D1, caspase-1, and IL-1ß. In vitro tube formation assay investigated angiogenesis. NLRP3 knockout mice were used to determine the mechanism of NLRP3 in CIH. RESULTS: CIH led to an increase in catecholamine. Catecholamine-ßAR inhibitor drugs prevented the increase in blood pressure caused by CIH. Notably, the drugs inhibited CIH-induced murine lung tumor growth, and the expression of Ki-67, cyclin D1, CD31, VEGFR2, PD-1 and PD-L1 in tumor decreased. In vitro, propranolol inhibits tube formation induced by CIH mouse serum. Moreover, CIH led to an increase in TNF-α, IL-6, IL-1ß, IFN-γ and sPD-L1 levels and a decrease in IL-10 in peripheral blood, accompanied by activation of NLRP3 inflammasomes in tumor, but these effects were also stopped by drugs. In NLRP3-knockout mice, CIH-induced upregulation of PD-1/PD-L1 in tumor was inhibited. CONCLUSIONS: Our study underscores the significant contribution of ß-adrenergic signaling and the NLRP3 inflammasome to CIH-induced lung cancer progression. These pathways represent potential therapeutic targets for mitigating the impact of OSA on lung cancer.
Asunto(s)
Progresión de la Enfermedad , Hipoxia , Inflamasomas , Neoplasias Pulmonares , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Adrenérgicos beta , Transducción de Señal , Animales , Masculino , Ratones , Antagonistas Adrenérgicos beta/farmacología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Enfermedad Crónica , Furanos , Hipoxia/metabolismo , Indenos , Inflamasomas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , SulfonamidasRESUMEN
BACKGROUND: Myocarditis substantially increases the risk of ventricular arrhythmia. Approximately 30% of all ventricular arrhythmia cases in patients with myocarditis originate from the right ventricular outflow tract (RVOT). However, the role of NLRP3 signaling in RVOT arrhythmogenesis remains unclear. METHODS: Rats with myosin peptide-induced myocarditis (experimental group) were treated with an NLRP3 inhibitor (MCC950; 10 mg/kg, daily for 14 days) or left untreated. Then, they were subjected to electrocardiography and echocardiography. Ventricular tissue samples were collected from each rat's RVOT, right ventricular apex (RVA), and left ventricle (LV) and examined through conventional microelectrode and histopathologic analyses. In addition, whole-cell patch-clamp recording, confocal fluorescence microscopy, and Western blotting were performed to evaluate ionic currents, intracellular Ca2+ transients, and Ca2+-modulated protein expression in individual myocytes isolated from the RVOTs. RESULTS: The LV ejection fraction was lower and premature ventricular contraction frequency was higher in the experimental group than in the control group (rats not exposed to myosin peptide). Myocarditis increased the infiltration of inflammatory cells into cardiac tissue and upregulated the expression of NLRP3; these observations were more prominent in the RVOT and RVA than in the LV. Furthermore, experimental rats treated with MCC950 (treatment group) improved their LV ejection fraction and reduced the frequency of premature ventricular contraction. Histopathological analysis revealed higher incidence of abnormal automaticity and pacing-induced ventricular tachycardia in the RVOTs of the experimental group than in those of the control and treatment groups. However, the incidences of these conditions in the RVA and LV were similar across the groups. The RVOT myocytes of the experimental group exhibited lower Ca2+ levels in the sarcoplasmic reticulum, smaller intracellular Ca2+ transients, lower L-type Ca2+ currents, larger late Na+ currents, larger Na+-Ca2+ exchanger currents, higher reactive oxygen species levels, and higher Ca2+/calmodulin-dependent protein kinase II levels than did those of the control and treatment groups. CONCLUSION: Myocarditis may increase the rate of RVOT arrhythmogenesis, possibly through electrical and structural remodeling. These changes may be mitigated by inhibiting NLRP3 signaling.
Asunto(s)
Arritmias Cardíacas , Miocarditis , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Ratas , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Furanos/farmacología , Indenos , Miocarditis/metabolismo , Miocarditis/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiologíaRESUMEN
The high prevalence of major depressive disorder (MDD) frequently imposes severe constraints on psychosocial functioning and detrimentally impacts overall well-being. Despite the growing interest in the hypothesis of mitochondrial dysfunction, the precise mechanistic underpinnings and therapeutic strategies remain unclear and require further investigation. In this study, an MDD model was established in mice using lipopolysaccharide (LPS). Our research findings demonstrated that LPS exposure induced depressive-like behaviors and disrupted mitophagy by diminishing the mitochondrial levels of PINK1/Parkin in the brains of mice. Furthermore, LPS exposure evoked the activation of the NLRP3 inflammasome, accompanied by a notable elevation in the concentrations of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6). Additionally, neuronal apoptosis was stimulated through the JNK/p38 pathway. The administration of BGP-15 effectively nullified the impact of LPS, corresponding to the amelioration of depressive-like phenotypes and restoration of mitophagy, prevention of neuronal injury and inflammation, and suppression of reactive oxygen species (ROS)-mediated NLRP3 inflammasome activation. Furthermore, we elucidated the involvement of mitophagy in BGP-15-attenuated depressive-like behaviors using the inhibitors targeting autophagy (3-MA) and mitophagy (Mdivi-1). Notably, these inhibitors notably counteracted the antidepressant and anti-inflammatory effects exerted by BGP-15. Based on the research findings, it can be inferred that the antidepressant properties of BGP-15 in LPS-induced depressive-like behaviors could potentially be attributed to the involvement of the mitophagy pathway. These findings offer a potential novel therapeutic strategy for managing MDD.
Asunto(s)
Depresión , Inflamasomas , Lipopolisacáridos , Mitocondrias , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Mitofagia/efectos de los fármacos , Ratones , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Depresión/metabolismo , Depresión/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Trastorno Depresivo Mayor/metabolismo , Inflamación/metabolismo , Conducta Animal/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Furanos , Indenos , SulfonamidasRESUMEN
BACKGROUND: New sleep-inducing drugs (eg, ramelteon, suvorexant, and lemborexant) have been shown to prevent delirium in high-risk groups. However, no single study has simultaneously evaluated the delirium-preventing effects of all novel sleep-inducing drugs in hospitalized patients. Therefore, this study aimed to clarify the relationship between sleep-inducing drugs and delirium prevention in patients hospitalized in general medical-surgical settings for nonpsychiatric conditions who underwent liaison interventions for insomnia. METHODS: This retrospective cohort study included patients treated in general medical-surgical settings for nonpsychiatric conditions with consultation-liaison psychiatry consult for insomnia. Delirium was diagnosed by fully certified psychiatrists using the Diagnostic and Statistical Manual of Mental Disorders 5 th edition. The following items were retrospectively examined from medical records as factors related to delirium development: type of sleep-inducing drugs, age, sex, and delirium risk factors. The risk factors of delirium development were calculated using adjusted odds ratios (aORs) via multivariate logistic regression analysis. RESULTS: Among the 710 patients analyzed, 257 (36.2%) developed delirium. Suvorexant (aOR, 0.61; 95% confidence interval [CI], 0.40-0.94; P = 0.02) and lemborexant (aOR, 0.23; 95% CI, 0.14-0.39; P < 0.0001) significantly reduced the risk of developing delirium. Benzodiazepines (aOR, 1.90; 95% CI, 1.15-3.13; P = 0.01) significantly increased this risk. Ramelteon (aOR, 1.30; 95% CI, 0.84-2.01; P = 0.24) and Z-drugs (aOR, 1.27; 95% CI, 0.81-1.98; P = 0.30) were not significantly associated with delirium development. CONCLUSIONS: The use of suvorexant and lemborexant may prevent delirium in patients with a wide range of medical conditions.