Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.642
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2311803121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330015

RESUMEN

Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, ß, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor ß1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Receptor alfa de Ácido Retinoico , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Fibrosis , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/prevención & control , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo
2.
PLoS Genet ; 19(1): e1010599, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693108

RESUMEN

Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Perros , Humanos , Animales , Teorema de Bayes , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/veterinaria , Insuficiencia Renal Crónica/epidemiología , Riñón , Alelos , Polimorfismo de Nucleótido Simple
3.
Circulation ; 149(22): 1752-1769, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38348663

RESUMEN

BACKGROUND: Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS: Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing ß-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS: Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS: Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Aldehídos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ratones Noqueados , Miocitos del Músculo Liso , Calcificación Vascular , Animales , Aldehídos/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Células Cultivadas , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Anciano
4.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36444934

RESUMEN

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Humanos , Aminopeptidasas , Nefropatías Diabéticas/genética , Secuenciación del Exoma , Riñón , Insuficiencia Renal Crónica/genética
5.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055212

RESUMEN

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Asunto(s)
Anemia , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Insuficiencia Renal Crónica , Anemia/tratamiento farmacológico , Anemia/genética , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Infarto del Miocardio/genética , Insuficiencia Renal Crónica/genética
6.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325935

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Isquemia/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
7.
Crit Rev Immunol ; 44(5): 15-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618725

RESUMEN

Chronic kidney disease (CKD) is a common disorder related to inflammatory pathways; its effective management remains limited. This study aimed to use bioinformatics analysis to find diagnostic markers that might be therapeutic targets for CKD. CKD microarray datasets were screened from the GEO database and the differentially expressed genes (DEGs) in CKD dataset GSE98603 were analyzed. Gene set variation analysis (GSVA) was used to explore the activity scores of the inflammatory pathways and samples. Algorithms such as weighted gene co-expression network analysis (WGCNA) and Lasso were used to screen CKD diagnostic markers related to inflammation. Then functional enrichment analysis of inflammation-related DEGs was performed. ROC curves were conducted to examine the diagnostic value of inflammation-related hub-genes. Lastly, quantitative real-time PCR further verified the prediction of bioinformatics. A total of 71 inflammation-related DEGs were obtained, of which 5 were hub genes. Enrichment analysis showed that these genes were significantly enriched in inflammation-related pathways (NF-κB, JAK-STAT, and MAPK signaling pathways). ROC curves showed that the 5 CKD diagnostic markers (TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11) also exhibited good diagnostic value. In addition, TIGD7, ACTA2, ACTG2, and HOXA11 expression was downregulated while MAP4K4 expression was upregulated in LPS-induced HK-2 cells. The present study identified TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11 as reliable CKD diagnostic markers, thereby providing a basis for further understanding of CKD in clinical treatments.


Asunto(s)
Perfilación de la Expresión Génica , Insuficiencia Renal Crónica , Humanos , Aprendizaje Automático , FN-kappa B , Inflamación/diagnóstico , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular
8.
Mol Ther ; 32(2): 313-324, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38093516

RESUMEN

Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-ß is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-ß/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Fibrosis , Riñón/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
Mol Cell Proteomics ; 22(6): 100550, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37076045

RESUMEN

Current proteomic tools permit the high-throughput analysis of the blood proteome in large cohorts, including those enriched for chronic kidney disease (CKD) or its risk factors. To date, these studies have identified numerous proteins associated with cross-sectional measures of kidney function, as well as with the longitudinal risk of CKD progression. Representative signals that have emerged from the literature include an association between levels of testican-2 and favorable kidney prognosis and an association between levels of TNFRSF1A and TNFRSF1B and worse kidney prognosis. For these and other associations, however, understanding whether the proteins play a causal role in kidney disease pathogenesis remains a fundamental challenge, especially given the strong impact that kidney function can have on blood protein levels. Prior to investing in dedicated animal models or randomized trials, methods that leverage the availability of genotyping in epidemiologic cohorts-including Mendelian randomization, colocalization analyses, and proteome-wide association studies-can add evidence for causal inference in CKD proteomics research. In addition, integration of large-scale blood proteome analyses with urine and tissue proteomics, as well as improved assessment of posttranslational protein modifications (e.g., carbamylation), represent important future directions. Taken together, these approaches seek to translate progress in large-scale proteomic profiling into the promise of improved diagnostic tools and therapeutic target identification in kidney disease.


Asunto(s)
Proteoma , Insuficiencia Renal Crónica , Animales , Proteoma/análisis , Proteómica/métodos , Estudios Transversales , Biomarcadores/metabolismo , Insuficiencia Renal Crónica/genética , Estudio de Asociación del Genoma Completo
10.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35947615

RESUMEN

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Asunto(s)
Insuficiencia Renal Crónica , Uromodulina , Heterocigoto , Humanos , Mutación , Insuficiencia Renal Crónica/genética , Uromodulina/genética
11.
PLoS Genet ; 18(4): e1010139, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385482

RESUMEN

Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Animales , Creatinina/metabolismo , Femenino , Humanos , Calicreínas/genética , Masculino , Osteopontina/genética , Osteopontina/metabolismo , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
12.
Am J Physiol Cell Physiol ; 327(2): C254-C269, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798269

RESUMEN

The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In in vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored adenosine triphosphate (ATP) synthesis. Among the transcriptome sequencing data, the difference of CXCL5 (C-X-C motif chemokine ligand 5) was the most significant. Both high copper and ADR exposure can cause upregulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.NEW & NOTEWORTHY Cuproptosis induced by excessive copper accumulation leads to podocyte cytoskeleton damage by promoting mitochondrial dysfunction, and CXCL5 acts as an upstream signal mediating the occurrence of cuproptosis.


Asunto(s)
Cobre , Citoesqueleto , Podocitos , Insuficiencia Renal Crónica , Podocitos/metabolismo , Podocitos/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Animales , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Cobre/metabolismo , Cobre/toxicidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Masculino , Doxorrubicina/toxicidad , Ratones Endogámicos C57BL , Potencial de la Membrana Mitocondrial , Humanos
13.
BMC Genomics ; 25(1): 576, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858654

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS: We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS: Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS: We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.


Asunto(s)
Mitocondrias , Humanos , Masculino , Mitocondrias/genética , Femenino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Variación Genética , Haplotipos , Insuficiencia Renal Crónica/genética , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicaciones , Polimorfismo de Nucleótido Simple , Adulto , Anciano
14.
Am J Physiol Renal Physiol ; 326(2): F178-F188, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994409

RESUMEN

Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Proteínas de Transporte de Catión , Sobrecarga de Hierro , Insuficiencia Renal Crónica , Humanos , Riñón/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Homeostasis/fisiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
15.
Am J Physiol Renal Physiol ; 326(2): F219-F226, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031732

RESUMEN

Protease-activated receptor 4 (PAR4) is a G protein-coupled receptor activated by thrombin. In the platelet, response to thrombin PAR4 contributes to the predominant procoagulant microparticle formation, increased fibrin deposition, and initiation of platelet-stimulated inflammation. In addition, PAR4 is expressed in other cell types, including endothelial cells. Under inflammatory conditions, PAR4 is overexpressed via epigenetic demethylation of the PAR4 gene, F2RL3. PAR4 knockout (KO) studies have determined a role for PAR4 in ischemia-reperfusion injury in the brain, and PAR4 KO mice display normal cardiac function but present less myocyte death and cardiac dysfunction in response to acute myocardial infarction. Although PAR4 has been reported to be expressed within the kidney, the contribution of PAR4 to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 KO mice are protected against kidney injury in two mouse models. First, PAR4 KO mice are protected against induction of markers of both fibrosis and inflammation in two different models of kidney injury: 1) 7 days following unilateral ureter obstruction (UUO) and 2) an AKI-CKD model of ischemia-reperfusion followed by 8 days of contralateral nephrectomy. We further show that PAR4 expression in the kidney is low in the control mouse kidney but induced over time following UUO. PAR4 KO mice are protected against blood urea nitrogen (BUN) and glomerular filtration rate (GFR) kidney function pathologies in the AKI-CKD model. Following the AKI-CKD model, PAR4 is expressed in the collecting duct colocalizing with Dolichos biflorus agglutinin (DBA), but not in the proximal tubule with Lotus tetragonolobus lectin (LTL). Collectively, the results reported in this study implicate PAR4 as contributing to the pathology in mouse models of acute and chronic kidney injury.NEW & NOTEWORTHY The contribution of the thrombin receptor protease-activated receptor 4 (PAR4) to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 expression is upregulated after kidney injury and PAR4 knockout (KO) mice are protected against fibrosis following kidney injury in two mouse models. First, PAR4 KO mice are protected against unilateral ureter obstruction. Second, PAR4 KO mice are protected against an AKI-CKD model of ischemia-reperfusion followed by contralateral nephrectomy.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Células Endoteliales/metabolismo , Fibrosis , Inflamación/patología , Isquemia/patología , Riñón/metabolismo , Ratones Noqueados , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/patología , Trombina/metabolismo , Trombina/farmacología
16.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38096951

RESUMEN

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Asunto(s)
Amiloidosis , Apolipoproteínas A , Nefritis Intersticial , Insuficiencia Renal Crónica , Humanos , Persona de Mediana Edad , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/genética , Nefritis Intersticial/complicaciones , Mutación , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/complicaciones
17.
Kidney Int ; 105(3): 593-607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143038

RESUMEN

Collapsing glomerulopathy (CG) is most often associated with fast progression to kidney failure with an incidence apparently higher in Brazil than in other countries. However, the reason for this occurrence is unknown. To better understand this, we performed an integrated analysis of clinical, histological, therapeutic, causative genetic and genetic ancestry data in a highly genetically admixed cohort of 70 children and adult patients with idiopathic CG (ICG). The disease onset occurred at 23 (interquartile range: 17-31) years and approximately half of patients progressed to chronic kidney disease requiring kidney replacement therapy (CKD-KRT) 36 months after diagnosis. Causative genetic bases, assessed by targeted-gene panel or whole-exome sequencing, were identified in 58.6% of patients. Among these cases, 80.5% harbored APOL1 high-risk genotypes (HRG) and 19.5% causative Mendelian variants (MV). Self-reported non-White patients more frequently had HRG. MV was an independent risk factor for progression to CKD-KRT by 36 months and the end of follow-up, while remission was an independent protective factor. All patients with HRG manifested CG at 9-44 years of age, whereas in those with APOL1 low-risk genotype, the disease arose throughout life. HRGs were associated with higher proportion of African genetic ancestry. Novel causative MVs were identified in COL4A5, COQ2 and PLCE1 and previously described causative MVs were identified in MYH9, TRPC6, COQ2, COL4A3 and TTC21B. Three patients displayed HRG combined with a variant of uncertain significance (ITGB4, LAMA5 or PTPRO). MVs were associated with worse kidney prognosis. Thus, our data reveal that the genetic status plays a major role in ICG pathogenesis, accounting for more than half of cases in a highly admixed Brazilian population.


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Adulto , Niño , Humanos , Apolipoproteína L1/genética , Genotipo , Riñón/patología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factores de Riesgo , Adolescente , Adulto Joven
18.
Kidney Int ; 105(4): 666-669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519232

RESUMEN

Amyloidosis is a rare cause of inherited kidney disease, with most variants responsible for prominent glomerular involvement. In this issue, Kmochová et al. reported the first description of autosomal dominant medullary amyloidosis due to apolipoprotein A4 variants, resulting in slowly progressive chronic kidney disease with minimal proteinuria. Combining next-generation sequencing with histopathological studies incorporating Congo red staining and mass spectrometry should be considered in the diagnostic workup of hereditary tubulointerstitial disorders not identified after routine genetic testing.


Asunto(s)
Amiloidosis , Nefritis Intersticial , Insuficiencia Renal Crónica , Humanos , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/genética , Nefritis Intersticial/complicaciones , Amiloidosis/diagnóstico , Amiloidosis/genética , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Pruebas Genéticas
19.
Kidney Int ; 105(2): 312-327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977366

RESUMEN

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Factor de Transcripción PAX2 , Factor de Transcripción PAX8 , Insuficiencia Renal Crónica , Animales , Femenino , Ratones , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/genética , Isquemia/complicaciones , Túbulos Renales Proximales/patología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Daño por Reperfusión/genética , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
20.
Kidney Int ; 105(6): 1162-1164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777400

RESUMEN

In this commentary, a novel approach to the reclassification of chronic kidney disease is reviewed. In the revisited study, the investigators identify 4 distinct subtypes of kidney disease derived from an unbiased self-organizing map of transcriptomic data from kidney biopsy samples. These molecular subtypes then are characterized by biologic cell processes, clinical and histopathologic features, urinary proteomics, and disease progression. The strengths and limitations of the self-organizing map approach are assessed; the prognostic, diagnostic, and therapeutic implications are considered briefly.


Asunto(s)
Progresión de la Enfermedad , Riñón , Proteómica , Insuficiencia Renal Crónica , Transcriptoma , Humanos , Pronóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Proteómica/métodos , Riñón/patología , Biopsia , Perfilación de la Expresión Génica , Biomarcadores/análisis , Biomarcadores/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA