Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.875
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 526-544, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306980

RESUMEN

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.


Asunto(s)
Inteligencia Artificial , Proteínas , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Ingeniería de Proteínas , Aprendizaje Profundo
2.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325366

RESUMEN

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Asunto(s)
Inteligencia Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariontes/química , Eucariontes/genética , Bacterias/química , Bacterias/genética
3.
Cell ; 186(22): 4868-4884.e12, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37863056

RESUMEN

Single-cell analysis in living humans is essential for understanding disease mechanisms, but it is impractical in non-regenerative organs, such as the eye and brain, because tissue biopsies would cause serious damage. We resolve this problem by integrating proteomics of liquid biopsies with single-cell transcriptomics from all known ocular cell types to trace the cellular origin of 5,953 proteins detected in the aqueous humor. We identified hundreds of cell-specific protein markers, including for individual retinal cell types. Surprisingly, our results reveal that retinal degeneration occurs in Parkinson's disease, and the cells driving diabetic retinopathy switch with disease stage. Finally, we developed artificial intelligence (AI) models to assess individual cellular aging and found that many eye diseases not associated with chronological age undergo accelerated molecular aging of disease-specific cell types. Our approach, which can be applied to other organ systems, has the potential to transform molecular diagnostics and prognostics while uncovering new cellular disease and aging mechanisms.


Asunto(s)
Envejecimiento , Humor Acuoso , Inteligencia Artificial , Biopsia Líquida , Proteómica , Humanos , Envejecimiento/metabolismo , Humor Acuoso/química , Biopsia , Enfermedad de Parkinson/diagnóstico
4.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37295417

RESUMEN

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Asunto(s)
Inteligencia Artificial , Infertilidad Masculina , Masculino , Humanos , Microscopía por Crioelectrón , Motilidad Espermática/genética , Semen , Espermatozoides , Microtúbulos/metabolismo , Cola del Espermatozoide/química , Cola del Espermatozoide/metabolismo , Proteínas de Microtúbulos/química , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo
5.
Cell ; 185(15): 2640-2643, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868269

RESUMEN

Over the last decade, the artificial intelligence (AI) has undergone a revolution that is poised to transform the economy, society, and science. The pace of progress is staggering, and problems that seemed intractable just a few years ago have now been solved. The intersection between neuroscience and AI is particularly exciting.


Asunto(s)
Inteligencia Artificial , Neurociencias , Biología
6.
Cell ; 185(15): 2621-2622, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868265

RESUMEN

Large and complex datasets have made artificial intelligence (AI) an invaluable tool for discovery across biological research. We asked experts how AI has impacted their work. Their experiences and perspectives offer thoughtful insights into potential offered by AI for their fields.


Asunto(s)
Inteligencia Artificial
7.
Cell ; 185(15): 2655-2656, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868273

RESUMEN

Generating considerable amounts of industrial waste requires rethinking chemistry for circularity in a broader picture. We discuss the study by Wolos et al. (2022) showing that the critical application of artificial intelligence on chemical reactivity can help us trace an unprecedented number of syntheses to novel responsible uses of waste.


Asunto(s)
Inteligencia Artificial
8.
Nat Rev Mol Cell Biol ; 25(6): 443-463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378991

RESUMEN

The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preserving cell viability. Computational methods can help to address this challenge and are now shifting the boundaries of what is possible to capture in living systems. In this Review, we discuss these computational methods focusing on artificial intelligence-based approaches that can be layered on top of commonly used existing microscopies as well as hybrid methods that integrate computation and microscope hardware. We specifically discuss how computational approaches can improve the signal-to-noise ratio, spatial resolution, temporal resolution and multi-colour capacity of live-cell imaging.


Asunto(s)
Microscopía Fluorescente , Humanos , Microscopía Fluorescente/métodos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Inteligencia Artificial , Relación Señal-Ruido , Supervivencia Celular
9.
Cell ; 184(6): 1415-1419, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33740447

RESUMEN

Precision medicine promises improved health by accounting for individual variability in genes, environment, and lifestyle. Precision medicine will continue to transform healthcare in the coming decade as it expands in key areas: huge cohorts, artificial intelligence (AI), routine clinical genomics, phenomics and environment, and returning value across diverse populations.


Asunto(s)
Atención a la Salud , Medicina de Precisión , Inteligencia Artificial , Macrodatos , Investigación Biomédica , Diversidad Cultural , Registros Electrónicos de Salud , Humanos , Fenómica
10.
Nat Immunol ; 24(12): 1982-1993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38012408

RESUMEN

Visualization of the cellular heterogeneity and spatial architecture of the tumor microenvironment (TME) is becoming increasingly important to understand mechanisms of disease progression and therapeutic response. This is particularly relevant in the era of cancer immunotherapy, in which the contexture of immune cell positioning within the tumor landscape has been proven to affect efficacy. Although single-cell technologies have mostly replaced conventional approaches to analyze specific cellular subsets within tumors, those that integrate a spatial dimension are now on the rise. In this Review, we assess the strengths and limitations of emerging spatial technologies with a focus on their applications in tumor immunology, as well as forthcoming opportunities for artificial intelligence (AI) and the value of integrating multiomics datasets to achieve a holistic picture of the TME.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inteligencia Artificial , Progresión de la Enfermedad , Inmunoterapia , Neoplasias/terapia
11.
Cell ; 181(6): 1423-1433.e11, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32416069

RESUMEN

Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Tomografía Computarizada por Rayos X , COVID-19 , China , Estudios de Cohortes , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Conjuntos de Datos como Asunto , Humanos , Pulmón/patología , Modelos Biológicos , Pandemias , Proyectos Piloto , Neumonía Viral/patología , Neumonía Viral/terapia , Pronóstico , Radiólogos , Insuficiencia Respiratoria/diagnóstico
12.
Immunity ; 57(6): 1177-1181, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38865960

RESUMEN

AI is rapidly becoming part of many aspects of daily life, with an impact that reaches all fields of research. We asked investigators to share their thoughts on how AI is changing immunology research, what is necessary to move forward, the potential and the pitfalls, and what will remain unchanged as the field journeys into a new era.


Asunto(s)
Alergia e Inmunología , Inteligencia Artificial , Humanos , Animales
14.
Genes Dev ; 37(9-10): 351-353, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37253615

RESUMEN

The core promoter determines not only where gene transcription initiates but also the transcriptional activity in both basal and enhancer-induced conditions. Multiple short sequence elements within the core promoter have been identified in different species, but how they function together and to what extent they are truly species-specific has remained unclear. In this issue of Genes & Development, Vo ngoc and colleagues (pp. 377-382) report undertaking massively parallel measurements of synthetic core promoters to generate a large data set of their activities that informs a statistical learning model to identify the sequence differences of human and Drosophila core promoters. This machine learning model was then applied to design gene core promoters that are particularly specific for the human transcriptional machinery.


Asunto(s)
Inteligencia Artificial , Proteínas de Drosophila , Animales , Humanos , Regiones Promotoras Genéticas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Transcripción Genética
15.
Genes Dev ; 37(21-24): 945-947, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092520

RESUMEN

RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of Genes & Development, Zhang and colleagues (pp. 968-983) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3' splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.


Asunto(s)
Empalme del ARN , Empalmosomas , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sitios de Empalme de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Inteligencia Artificial , Mutación , Fosfoproteínas/metabolismo
16.
Physiol Rev ; 103(4): 2423-2450, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37104717

RESUMEN

Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.


Asunto(s)
Inteligencia Artificial , Atención a la Salud , Humanos
17.
Nature ; 627(8002): 49-58, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448693

RESUMEN

Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists' visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community's ability to see the formation of scientific monocultures, in which some types of methods, questions and viewpoints come to dominate alternative approaches, making science less innovative and more vulnerable to errors. The proliferation of AI tools in science risks introducing a phase of scientific enquiry in which we produce more but understand less. By analysing the appeal of these tools, we provide a framework for advancing discussions of responsible knowledge production in the age of AI.


Asunto(s)
Inteligencia Artificial , Ilusiones , Conocimiento , Proyectos de Investigación , Investigadores , Humanos , Inteligencia Artificial/provisión & distribución , Inteligencia Artificial/tendencias , Cognición , Difusión de Innovaciones , Eficiencia , Reproducibilidad de los Resultados , Proyectos de Investigación/normas , Proyectos de Investigación/tendencias , Riesgo , Investigadores/psicología , Investigadores/normas
18.
Nature ; 627(8004): 559-563, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509278

RESUMEN

Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks1. Accurate and timely warnings are critical for mitigating flood risks2, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that artificial intelligence-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a five-day lead time that is similar to or better than the reliability of nowcasts (zero-day lead time) from a current state-of-the-art global modelling system (the Copernicus Emergency Management Service Global Flood Awareness System). In addition, we achieve accuracies over five-year return period events that are similar to or better than current accuracies over one-year return period events. This means that artificial intelligence can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed here was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.


Asunto(s)
Inteligencia Artificial , Simulación por Computador , Inundaciones , Predicción , Predicción/métodos , Reproducibilidad de los Resultados , Ríos , Hidrología , Calibración , Factores de Tiempo , Planificación en Desastres/métodos
19.
Nature ; 627(8002): 80-87, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418888

RESUMEN

Integrated microwave photonics (MWP) is an intriguing technology for the generation, transmission and manipulation of microwave signals in chip-scale optical systems1,2. In particular, ultrafast processing of analogue signals in the optical domain with high fidelity and low latency could enable a variety of applications such as MWP filters3-5, microwave signal processing6-9 and image recognition10,11. An ideal integrated MWP processing platform should have both an efficient and high-speed electro-optic modulation block to faithfully perform microwave-optic conversion at low power and also a low-loss functional photonic network to implement various signal-processing tasks. Moreover, large-scale, low-cost manufacturability is required to monolithically integrate the two building blocks on the same chip. Here we demonstrate such an integrated MWP processing engine based on a 4 inch wafer-scale thin-film lithium niobate platform. It can perform multipurpose tasks with processing bandwidths of up to 67 GHz at complementary metal-oxide-semiconductor (CMOS)-compatible voltages. We achieve ultrafast analogue computation, namely temporal integration and differentiation, at sampling rates of up to 256 giga samples per second, and deploy these functions to showcase three proof-of-concept applications: solving ordinary differential equations, generating ultra-wideband signals and detecting edges in images. We further leverage the image edge detector to realize a photonic-assisted image segmentation model that can effectively outline the boundaries of melanoma lesion in medical diagnostic images. Our ultrafast lithium niobate MWP engine could provide compact, low-latency and cost-effective solutions for future wireless communications, high-resolution radar and photonic artificial intelligence.


Asunto(s)
Microondas , Niobio , Óptica y Fotónica , Óxidos , Fotones , Inteligencia Artificial , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Melanoma/diagnóstico por imagen , Melanoma/patología , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Radar , Tecnología Inalámbrica , Humanos
20.
Mol Cell ; 82(12): 2335-2349, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35714588

RESUMEN

Mass spectrometry (MS)-based proteomics has become a powerful technology to quantify the entire complement of proteins in cells or tissues. Here, we review challenges and recent advances in the LC-MS-based analysis of minute protein amounts, down to the level of single cells. Application of this technology revealed that single-cell transcriptomes are dominated by stochastic noise due to the very low number of transcripts per cell, whereas the single-cell proteome appears to be complete. The spatial organization of cells in tissues can be studied by emerging technologies, including multiplexed imaging and spatial transcriptomics, which can now be combined with ultra-sensitive proteomics. Combined with high-content imaging, artificial intelligence and single-cell laser microdissection, MS-based proteomics provides an unbiased molecular readout close to the functional level. Potential applications range from basic biological questions to precision medicine.


Asunto(s)
Inteligencia Artificial , Proteómica , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA