Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 627(8002): 49-58, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448693

RESUMEN

Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists' visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community's ability to see the formation of scientific monocultures, in which some types of methods, questions and viewpoints come to dominate alternative approaches, making science less innovative and more vulnerable to errors. The proliferation of AI tools in science risks introducing a phase of scientific enquiry in which we produce more but understand less. By analysing the appeal of these tools, we provide a framework for advancing discussions of responsible knowledge production in the age of AI.


Asunto(s)
Inteligencia Artificial , Ilusiones , Conocimiento , Proyectos de Investigación , Investigadores , Humanos , Inteligencia Artificial/provisión & distribución , Inteligencia Artificial/tendencias , Cognición , Difusión de Innovaciones , Eficiencia , Reproducibilidad de los Resultados , Proyectos de Investigación/normas , Proyectos de Investigación/tendencias , Riesgo , Investigadores/psicología , Investigadores/normas
2.
Nature ; 620(7972): 47-60, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532811

RESUMEN

Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI toolsneed a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation.


Asunto(s)
Inteligencia Artificial , Proyectos de Investigación , Inteligencia Artificial/normas , Inteligencia Artificial/tendencias , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Proyectos de Investigación/normas , Proyectos de Investigación/tendencias , Aprendizaje Automático no Supervisado
4.
Nature ; 575(7784): 607-617, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31776490

RESUMEN

Guided by brain-like 'spiking' computational frameworks, neuromorphic computing-brain-inspired computing for machine intelligence-promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm-hardware codesign.


Asunto(s)
Inteligencia Artificial/tendencias , Computadores/tendencias , Redes Neurales de la Computación , Algoritmos , Modelos Neurológicos
10.
Nature ; 568(7753): 477-486, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31019318

RESUMEN

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the technical, legal and institutional constraints on the study of machine behaviour.


Asunto(s)
Inteligencia Artificial , Inteligencia Artificial/legislación & jurisprudencia , Inteligencia Artificial/tendencias , Humanos , Motivación , Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA