Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113354

RESUMEN

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Aprendizaje , Potenciales de Acción , Animales , Conducta Animal , Biomarcadores/metabolismo , Cuerpo Estriado/fisiopatología , Aprendizaje Discriminativo , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Interneuronas/patología , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiopatología , Parvalbúminas/metabolismo , Fotometría , Recompensa , Análisis y Desempeño de Tareas
2.
Nature ; 632(8026): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048816

RESUMEN

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Colina/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Proteína Reelina , Transducción de Señal , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
3.
Nature ; 622(7982): 359-366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758944

RESUMEN

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Trastornos del Neurodesarrollo , Femenino , Humanos , Recién Nacido , Embarazo , Movimiento Celular/genética , Sistemas CRISPR-Cas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Organoides/citología , Organoides/embriología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Organoides/patología , Retículo Endoplásmico/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transporte Activo de Núcleo Celular
4.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526163

RESUMEN

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Asunto(s)
Azepinas/farmacología , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/fisiología , Síndrome de Rett/patología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Factores de Transcripción/genética
5.
PLoS Comput Biol ; 20(7): e1012259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968294

RESUMEN

Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.


Asunto(s)
Biología Computacional , Síndrome de Down , Modelos Neurológicos , Síndrome de Down/fisiopatología , Síndrome de Down/patología , Animales , Ratones , Células Piramidales/patología , Células Piramidales/fisiología , Neuronas/fisiología , Neuronas/patología , Interneuronas/fisiología , Interneuronas/patología , Simulación por Computador , Corteza Motora/fisiopatología , Corteza Motora/patología , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Red Nerviosa/fisiopatología , Red Nerviosa/patología
6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38760318

RESUMEN

Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.


Asunto(s)
Interneuronas , Parvalbúminas , Corteza Prefrontal , Humanos , Corteza Prefrontal/patología , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Interneuronas/patología , Interneuronas/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Suicidio , Anciano , Autopsia , Maltrato a los Niños/psicología , Adulto Joven
7.
Physiol Rev ; 97(4): 1619-1747, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28954853

RESUMEN

In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Inhibición Neural , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/fisiopatología , Neuronas GABAérgicas/patología , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Interneuronas/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Receptores de GABA/metabolismo
8.
Genet Med ; 26(5): 101087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genética
9.
Acta Neuropathol ; 147(1): 80, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Eminencia Ganglionar , Interneuronas/patología , Interneuronas/metabolismo , Eminencia Media/patología , Eminencia Media/metabolismo , Receptores de GABA-A/metabolismo , Somatostatina/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Animales
10.
Brain Behav Immun ; 119: 286-300, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608739

RESUMEN

Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo , Ratones Transgénicos , Microglía , Placa Amiloide , Animales , Microglía/metabolismo , Microglía/patología , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Placa Amiloide/metabolismo , Placa Amiloide/patología , Péptidos beta-Amiloides/metabolismo , Masculino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Interneuronas/metabolismo , Interneuronas/patología
11.
Epilepsia ; 65(8): 2483-2496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819633

RESUMEN

OBJECTIVE: Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS: We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS: Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE: Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.


Asunto(s)
Epilepsia , Hipocampo , Interneuronas , Parvalbúminas , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/patología , Epilepsia/genética , Hipocampo/patología , Hipocampo/metabolismo , Interneuronas/patología , Interneuronas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Proteína 2 de Unión a Metil-CpG/genética , Ratones Transgénicos , Parvalbúminas/metabolismo
12.
J Neurosci ; 42(17): 3659-3675, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35304427

RESUMEN

Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2+ spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI. To test whether the onset and progression of SCI-induced sympathetic plasticity is neuron activity dependent, we selectively inhibited (or excited) thoracic VGluT2+ interneurons using chemogenetics. New data show that silencing VGluT2+ interneurons in female and male mice with a T3 SCI, using hM4Di designer receptors exclusively activated by designer drugs (Gi DREADDs), blocks structural plasticity and the development of dysautonomia. Specifically, silencing VGluT2+ interneurons prevents the structural remodeling of spinal sympathetic networks that project to lymphoid and endocrine organs, reduces the frequency of spontaneous autonomic dysreflexia (AD), and reduces the severity of experimentally induced AD. Features of SCI-induced structural plasticity can be recapitulated in the intact spinal cord by activating excitatory hM3Dq-DREADDs in VGluT2+ interneurons. Collectively, these data implicate VGluT2+ excitatory SpINs in the onset and propagation of SCI-induced structural plasticity and dysautonomia, and reveal the potential for neuromodulation to block or reduce dysautonomia after severe high-level SCI.SIGNIFICANCE STATEMENT In response to stress or dangerous stimuli, autonomic spinal neurons coordinate a "fight or flight" response marked by increased cardiac output and release of stress hormones. After a spinal cord injury (SCI), normally harmless stimuli like bladder filling can result in a "false" fight or flight response, causing pathological changes throughout the body. We show that progressive hypertension and immune suppression develop after SCI because thoracic excitatory VGluT2+ spinal interneurons (SpINs) provoke structural remodeling in autonomic networks within below-lesion spinal levels. These pathological changes can be prevented in SCI mice or phenocopied in uninjured mice using chemogenetics to selectively manipulate activity in VGluT2+ SpINs. Targeted neuromodulation of SpINs could prevent structural plasticity and subsequent autonomic dysfunction in people with SCI.


Asunto(s)
Disreflexia Autónoma , Disautonomías Primarias , Traumatismos de la Médula Espinal , Animales , Disreflexia Autónoma/etiología , Femenino , Humanos , Interneuronas/patología , Masculino , Ratones , Disautonomías Primarias/complicaciones , Médula Espinal/patología
13.
Semin Cell Dev Biol ; 110: 34-42, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32732132

RESUMEN

Neural development requires a series of cellular events starting with cell specification, proliferation, and migration. Subsequently, axons and dendrites project from the cell surface to form connections to other neurons, interneurons and glia. Anomalies in any one of these steps can lead to malformation or malfunction of the nervous system. Here we review the critical role the primary cilium plays in the fundamental steps of neurodevelopment. By highlighting human diseases caused by mutations in cilia-associated proteins, it is clear that cilia are essential to multiple neural processes. Furthermore, we explore whether additional aspects of cilia regulation, most notably post-translational modification of the tubulin scaffold in cilia, play underappreciated roles in neural development. Finally, we discuss whether cilia-associated proteins function outside the cilium in some aspects of neurodevelopment. These data underscore both the importance of cilia in the nervous system and some outstanding questions in the field.


Asunto(s)
Encéfalo/metabolismo , Cilios/metabolismo , Ciliopatías/genética , Proteínas Hedgehog/genética , Discapacidad Intelectual/genética , Células de Purkinje/metabolismo , Animales , Axones/metabolismo , Axones/patología , Encéfalo/anomalías , Encéfalo/crecimiento & desarrollo , Cilios/ultraestructura , Ciliopatías/metabolismo , Ciliopatías/patología , Embrión de Mamíferos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Microtúbulos/metabolismo , Microtúbulos/patología , Neurogénesis/genética , Neuroglía/metabolismo , Neuroglía/patología , Células de Purkinje/patología , Vía de Señalización Wnt
14.
RNA ; 27(12): 1482-1496, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535545

RESUMEN

Conversion of adenosine to inosine in RNA by ADAR enzymes, termed "RNA editing," is essential for healthy brain development. Editing is dysregulated in neuropsychiatric diseases, but has not yet been investigated at scale at the level of individual neurons. We quantified RNA editing sites in nuclear transcriptomes of 3055 neurons from six cortical regions of a neurotypical female donor, and found 41,930 sites present in at least ten nuclei. Most sites were located within Alu repeats in introns or 3' UTRs, and approximately 80% were cataloged in public RNA editing databases. We identified 9285 putative novel editing sites, 29% of which were also detectable in unrelated donors. Intersection with results from bulk RNA-seq studies provided cell-type and spatial context for 1730 sites that are differentially edited in schizophrenic brain donors, and 910 such sites in autistic donors. Autism-related genes were also enriched with editing sites predicted to modify RNA structure. Inhibitory neurons showed higher overall transcriptome editing than excitatory neurons, and the highest editing rates were observed in the frontal cortex. We used generalized linear models to identify differentially edited sites and genes between cell types. Twenty nine genes were preferentially edited in excitatory neurons, and 43 genes were edited more heavily in inhibitory neurons, including RBFOX1, its target genes, and genes in the autism-associated Prader-Willi locus (15q11). The abundance of SNORD115/116 genes from locus 15q11 was positively associated with editing activity across the transcriptome. We contend that insufficient editing of autism-related genes in inhibitory neurons may contribute to the specific perturbation of those cells in autism.


Asunto(s)
Trastorno Autístico/patología , Bases de Datos Factuales/estadística & datos numéricos , Genoma Humano , Interneuronas/patología , Edición de ARN , Esquizofrenia/patología , Transcriptoma , Trastorno Autístico/genética , Humanos , Interneuronas/metabolismo , Esquizofrenia/genética
15.
PLoS Biol ; 18(3): e3000638, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208418

RESUMEN

Caenorhabditis elegans and its cognate bacterial diet comprise a reliable, widespread model to study diet and microbiota effects on host physiology. Nonetheless, how diet influences the rate at which neurons die remains largely unknown. A number of models have been used in C. elegans as surrogates for neurodegeneration. One of these is a C. elegans strain expressing a neurotoxic allele of the mechanosensory abnormality protein 4 (MEC-4d) degenerin/epithelial Na+ (DEG/ENaC) channel, which causes the progressive degeneration of the touch receptor neurons (TRNs). Using this model, our study evaluated the effect of various dietary bacteria on neurodegeneration dynamics. Although degeneration of TRNs was steady and completed at adulthood in the strain routinely used for C. elegans maintenance (Escherichia coli OP50), it was significantly reduced in environmental and other laboratory bacterial strains. Strikingly, neuroprotection reached more than 40% in the E. coli HT115 strain. HT115 protection was long lasting well into old age of animals and was not restricted to the TRNs. Small amounts of HT115 on OP50 bacteria as well as UV-killed HT115 were still sufficient to produce neuroprotection. Early growth of worms in HT115 protected neurons from degeneration during later growth in OP50. HT115 diet promoted the nuclear translocation of DAF-16 (ortholog of the FOXO family of transcription factors), a phenomenon previously reported to underlie neuroprotection caused by down-regulation of the insulin receptor in this system. Moreover, a daf-16 loss-of-function mutation abolishes HT115-driven neuroprotection. Comparative genomics, transcriptomics, and metabolomics approaches pinpointed the neurotransmitter γ-aminobutyric acid (GABA) and lactate as metabolites differentially produced between E. coli HT115 and OP50. HT115 mutant lacking glutamate decarboxylase enzyme genes (gad), which catalyze the conversion of GABA from glutamate, lost the ability to produce GABA and also to stop neurodegeneration. Moreover, in situ GABA supplementation or heterologous expression of glutamate decarboxylase in E. coli OP50 conferred neuroprotective activity to this strain. Specific C. elegans GABA transporters and receptors were required for full HT115-mediated neuroprotection. Additionally, lactate supplementation also increased anterior ventral microtubule (AVM) neuron survival in OP50. Together, these results demonstrate that bacterially produced GABA and other metabolites exert an effect of neuroprotection in the host, highlighting the role of neuroactive compounds of the diet in nervous system homeostasis.


Asunto(s)
Caenorhabditis elegans/fisiología , Escherichia coli/fisiología , Neuronas/patología , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Bacterias/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Dieta , Escherichia coli/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Bacteriana de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Interneuronas/patología , Interneuronas/fisiología , Lactatos/metabolismo , Lactatos/farmacología , Mecanorreceptores/patología , Mecanorreceptores/fisiología , Mutación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ácido gamma-Aminobutírico/farmacología
16.
Nature ; 545(7652): 54-59, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28445465

RESUMEN

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome-a neurodevelopmental disorder that is caused by mutations in the CaV1.2 calcium channel-interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.


Asunto(s)
Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Esferoides Celulares/citología , Trastorno Autístico/genética , Trastorno Autístico/patología , Línea Celular , Movimiento Celular , Células Cultivadas , Femenino , Neuronas GABAérgicas/citología , Ácido Glutámico/metabolismo , Humanos , Interneuronas/citología , Interneuronas/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Masculino , Modelos Biológicos , Neurogénesis , Neuronas/patología , Células Madre Pluripotentes/citología , Prosencéfalo/anatomía & histología , Sinapsis/fisiología , Sindactilia/genética , Sindactilia/patología
17.
Nature ; 541(7635): 87-91, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002403

RESUMEN

XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.


Asunto(s)
Ataxia Cerebelosa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Alelos , Animales , Apraxias/congénito , Apraxias/genética , Ataxia/genética , Axones/patología , Ataxia Cerebelosa/patología , Cerebelo/metabolismo , Cerebelo/patología , Cromatina/metabolismo , Síndrome de Cogan/genética , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Femenino , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Ratones , Linaje , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
18.
Proc Natl Acad Sci U S A ; 117(40): 25138-25149, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958675

RESUMEN

Major depressive disorder emerges from the complex interactions of biological systems that span genes and molecules through cells, networks, and behavior. Establishing how neurobiological processes coalesce to contribute to depression requires a multiscale approach, encompassing measures of brain structure and function as well as genetic and cell-specific transcriptional data. Here, we examine anatomical (cortical thickness) and functional (functional variability, global brain connectivity) correlates of depression and negative affect across three population-imaging datasets: UK Biobank, Brain Genomics Superstruct Project, and Enhancing NeuroImaging through Meta Analysis (ENIGMA; combined n ≥ 23,723). Integrative analyses incorporate measures of cortical gene expression, postmortem patient transcriptional data, depression genome-wide association study (GWAS), and single-cell gene transcription. Neuroimaging correlates of depression and negative affect were consistent across three independent datasets. Linking ex vivo gene down-regulation with in vivo neuroimaging, we find that transcriptional correlates of depression imaging phenotypes track gene down-regulation in postmortem cortical samples of patients with depression. Integrated analysis of single-cell and Allen Human Brain Atlas expression data reveal somatostatin interneurons and astrocytes to be consistent cell associates of depression, through both in vivo imaging and ex vivo cortical gene dysregulation. Providing converging evidence for these observations, GWAS-derived polygenic risk for depression was enriched for genes expressed in interneurons, but not glia. Underscoring the translational potential of multiscale approaches, the transcriptional correlates of depression-linked brain function and structure were enriched for disorder-relevant molecular pathways. These findings bridge levels to connect specific genes, cell classes, and biological pathways to in vivo imaging correlates of depression.


Asunto(s)
Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Trastorno Depresivo Mayor/genética , Regulación de la Expresión Génica/genética , Somatostatina/genética , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/patología , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Femenino , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Herencia Multifactorial/genética , Neuroimagen/métodos , Transducción de Señal/genética , Análisis de la Célula Individual/métodos
19.
Proc Natl Acad Sci U S A ; 117(11): 6189-6195, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123116

RESUMEN

Neurofibromatosis 1 (NF1) is caused by mutations in the NF1 gene, which encodes the protein, neurofibromin, an inhibitor of Ras activity. Cortical GABAergic interneurons (CINs) are implicated in NF1 pathology, but the cellular and molecular changes to CINs are unknown. We deleted mouse Nf1 from the medial ganglionic eminence, which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin. Nf1 loss led to a persistence of immature oligodendrocytes that prevented later-generated oligodendrocytes from occupying the cortex. Moreover, molecular and cellular properties of parvalbumin (PV)-positive CINs were altered by the loss of Nf1, without changes in somatostatin (SST)-positive CINs. We discovered that loss of Nf1 results in a dose-dependent decrease in Lhx6 expression, the transcription factor necessary to establish SST+ and PV+ CINs, which was rescued by the MEK inhibitor SL327, revealing a mechanism whereby a neurofibromin/Ras/MEK pathway regulates a critical CIN developmental milestone.


Asunto(s)
Corteza Cerebral/patología , Neuronas GABAérgicas/patología , Interneuronas/patología , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Factores de Transcripción/metabolismo , Aminoacetonitrilo/administración & dosificación , Aminoacetonitrilo/análogos & derivados , Animales , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Neuronas GABAérgicas/metabolismo , Humanos , Interneuronas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Eminencia Media/citología , Ratones , Ratones Noqueados , Neurofibromatosis 1/genética , Neurofibromina 1/metabolismo , Neuroglía/citología , Parvalbúminas/metabolismo , Cultivo Primario de Células , Somatostatina/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
20.
Croat Med J ; 64(2): 110-122, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37131313

RESUMEN

GABAergic cortical interneurons are important components of cortical microcircuits. Their alterations are associated with a number of neurological and psychiatric disorders, and are thought to be especially important in the pathogenesis of schizophrenia. Here, we reviewed neuroanatomical and histological studies that analyzed different populations of cortical interneurons in postmortem human tissue from patients with schizophrenia and adequately matched controls. The data strongly suggests that in schizophrenia only selective interneuron populations are affected, with alterations of somatostatin and parvalbumin neurons being the most convincing. The most prominent changes are found in the prefrontal cortex, which is consistent with the impairment of higher cognitive functions characteristic of schizophrenia. In contrast, calretinin neurons, the most numerous interneuron population in primates, seem to be largely unaffected. The selective alterations of cortical interneurons are in line with the neurodevelopmental model and the multiple-hit hypothesis of schizophrenia. Nevertheless, a large number of data on interneurons in schizophrenia is still inconclusive, with different studies yielding opposing findings. Furthermore, no studies found a clear link between interneuron alterations and clinical outcomes. Future research should focus on the causes of changes in the cortical microcircuitry in order to identify potential therapeutic targets.


Asunto(s)
Esquizofrenia , Animales , Humanos , Esquizofrenia/patología , Interneuronas/metabolismo , Interneuronas/patología , Corteza Prefrontal/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA