RESUMEN
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Asunto(s)
ARN Polimerasa II/genética , Transcripción Genética/genética , Animales , Humanos , Isomerasas/genética , Regiones Promotoras Genéticas/genéticaRESUMEN
Topoisomerases (TOP1, TOP2α, and ß) are nuclear enzymes crucial for virtually all aspects of DNA metabolisms. They also are the targets of important anti-tumor chemotherapeutics that act by trapping the otherwise reversible topoisomerase-DNA covalent complex intermediates (TOPccs) that are formed during their catalytic reactions, resulting in long-lived topoisomerase DNA-protein crosslinks (TOP-DPCs) that interfere with DNA transactions. The Poly(ADP-ribose) polymerase (PARP) family protein PARP1 is activated by DNA damage to recruit DNA repair proteins, and PARP inhibitors are another class of commonly used chemotherapeutics, which bind and trap PARP molecules on DNA. To date, the trapping of TOPccs and PARP by their respective inhibitors can only be measured by immune-biochemical methods in cells. Here, we developed an imaging-based approach enabling real-time monitoring of drug-induced trapping of TOPccs and PARP1 in live cells at the single-molecule level. Capitalizing on this approach, we calculated the fraction of self-fluorescence tag-labeled topoisomerases and PARP single-molecules that are trapped by their respective inhibitors in real time. This novel technique should help elucidate the molecular processes that repair TOPcc and PARP trapping and facilitate the development of novel topoisomerase and PARP inhibitor-based therapies.
Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Daño del ADN , Reparación del ADN , Isomerasas/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismoRESUMEN
Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD)6, Ge] and Gossypium stephensii [(AD)7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD)1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates-including phenotypic differentiation, genetic isolation, and genetic convergence-that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.
Asunto(s)
Evolución Molecular , Genoma de Planta , Gossypium , Fibra de Algodón , Variación Genética/genética , Genoma de Planta/genética , Gossypium/clasificación , Gossypium/genética , Isomerasas/genética , Isomerasas/metabolismo , TetraploidíaRESUMEN
The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-ß-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-ß-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-ß-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-ß-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Isomerasas/genética , Isomerasas/metabolismoRESUMEN
How type 2 Topoisomerase (TopoII) proteins relax and simplify the topology of DNA molecules is one of the most intriguing open questions in genome and DNA biophysics. Most of the existing models neglect the dynamics of TopoII which is expected of proteins searching their targets via facilitated diffusion. Here, we show that dynamic binding of TopoII speeds up the topological relaxation of knotted substrates by enhancing the search of the knotted arc. Intriguingly, this in turn implies that the timescale of topological relaxation is virtually independent of the substrate length. We then discover that considering binding biases due to facilitated diffusion on looped substrates steers the sampling of the topological space closer to the boundaries between different topoisomers yielding an optimally fast topological relaxation. We discuss our findings in the context of topological simplification in vitro and in vivo.
Asunto(s)
ADN-Topoisomerasas de Tipo II , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/química , Isomerasas/genética , GenomaRESUMEN
Members of the 4-oxalocrotonate tautomerase (4-OT) subgroup in the tautomerase superfamily (TSF) are constructed from a single ß-α-ß unit and form homo- or heterohexamers, whereas those of the other four subgroups are composed of two consecutively joined ß-α-ß units and form trimers. A subset of sequences, double the length of the short 4-OTs, is found in the 4-OT subgroup. These "fused" 4-OTs form a separate subgroup that connects to the short 4-OTs in a sequence similarity network (SSN). The fused gene can be a template for the other four subgroups, resulting in the diversification of activity. Analysis of the SSN shows that multiple nodes in the fused 4-OTs connect to five linker nodes, which in turn connect to the short 4-OTs. Some fused 4-OTs are symmetric trimers and others are asymmetric trimers. The origin of this asymmetry was investigated by subjecting the sequences in three linker nodes and a closely associated fourth node to kinetic, mutagenic, and structural analyses. The results show that each sequence corresponds to the α- or ß-subunit of a heterohexamer that functions as a 4-OT. Mutagenesis indicates that the key residues in both are αPro1 and ßArg-11, like that of a typical 4-OT. Crystallographic analysis shows that both heterohexamers are asymmetric, where one heterodimer is flipped 180° relative to the other two heterodimers. The fusion of two subunits (α and ß) of one asymmetric heterohexamer generates an asymmetric trimer with 4-OT activity. Hence, asymmetry can be introduced at the heterohexamer level and then retained in the fused trimers.
Asunto(s)
Isomerasas , Isomerasas/genética , Isomerasas/química , MutagénesisRESUMEN
Carotenoids contribute to a variety of physiological processes in plants, functioning also as biosynthesis precursors of ABA and strigolactones (SLs). SL biosynthesis starts with the enzymatic conversion of all-trans-ß-carotene to 9-cis-ß-carotene by the DWARF27 (D27) isomerase. In Arabidopsis, D27 has two closely related paralogs, D27-LIKE1 and D27-LIKE2, which were predicted to be ß-carotene-isomerases. In the present study, we characterised D27-LIKE1 and identified some key aspects of its physiological and enzymatic functions in Arabidopsis. d27-like1-1 mutant does not display any strigolactone-deficient traits and exhibits a substantially higher 9-cis-violaxanthin content, which is accompanied by a slightly higher ABA level. In vitro feeding assays with recombinant D27-LIKE1 revealed that the protein exhibits affinity to all ß-carotene isoforms but with an exclusive preference towards trans/cis conversions and the interconversion between 9-cis, 13-cis and 15-cis-ß-carotene forms, and accepts zeaxanthin and violaxanthin as substrates. Finally, we present evidence showing that D27-LIKE1 mRNA is phloem mobile and D27-LIKE1 is an ancient isomerase with a long evolutionary history. In summary, we demonstrate that D27-LIKE1 is a carotenoid isomerase with multi-substrate specificity and has a characteristic preference towards the catalysation of cis/cis interconversion of carotenoids. Therefore, D27-LIKE1 is a potential regulator of carotenoid cis pools and, eventually, SL and ABA biosynthesis pathways.
Asunto(s)
Arabidopsis , Carotenoides , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , Isomerasas/química , Isomerasas/genética , Isomerasas/metabolismoRESUMEN
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Asunto(s)
Bacterias , Evolución Molecular , Bacterias/genética , Duplicación de Gen , Archaea/genética , Isomerasas/genéticaRESUMEN
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Asunto(s)
ADN-Topoisomerasas de Tipo II , Lateralidad Funcional , Humanos , ADN-Topoisomerasas de Tipo II/metabolismo , ADN , Isomerasas/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismoRESUMEN
KEY MESSAGE: The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon. Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line '302' to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant ('psf'). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in 'psf' which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.
Asunto(s)
Citrullus , Carotenoides/metabolismo , Frutas , Humanos , Isomerasas/genética , Isomerasas/metabolismo , Mutación , Pigmentación/genética , Fitomejoramiento , zeta Caroteno/metabolismoRESUMEN
Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4-oxalocrotonate tautomerase (4-OT) into an efficient biocatalyst for enantioselective Michael reactions. We first designed a tandem-fused 4-OT to allow independent sequence diversification of adjacent subunits by directed evolution. This fused 4-OT was then subjected to eleven rounds of directed evolution to give variant 4-OT(F11), which showed an up to 320-fold enhanced activity for the Michael addition of nitromethane to cinnamaldehydes. Crystallographic analysis revealed that 4-OT(F11) has an unusual asymmetric trimeric architecture in which one of the monomers is flipped 180° relative to the others. This gene duplication and fusion strategy to break structural symmetry is likely to become an indispensable asset of the enzyme engineering toolbox, finding wide use in engineering oligomeric proteins.
Asunto(s)
Isomerasas , Biocatálisis , Fusión Génica , Isomerasas/química , Isomerasas/genética , Isomerasas/metabolismo , Conformación Proteica , Pseudomonas putida/enzimologíaRESUMEN
Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster-dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli. Our studies include the identification of the A-type carrier proteins ErpA and IscA, involved in [4Fe-4S] cluster insertion into the radical S-adenosyl-methionine (SAM) enzyme MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not appear to have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth employing nitrate respiration, based on the low level of gene expression. IMPORTANCE Understanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics, and gene regulation. Remaining critical gaps in our knowledge include how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SufA, and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.
Asunto(s)
Proteínas Portadoras/metabolismo , Coenzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hierro-Azufre/metabolismo , Isomerasas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/genética , Isomerasas/genética , Cofactores de Molibdeno , Familia de Multigenes , Nitrato-ReductasaRESUMEN
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.
Asunto(s)
Proteínas Bacterianas/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Rhodospirillum rubrum/metabolismo , S-Adenosilmetionina/metabolismo , Tionucleósidos/metabolismo , Proteínas Bacterianas/genética , Carbono/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Escherichia coli/genética , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Isomerasas/genética , Isomerasas/metabolismo , Redes y Vías Metabólicas/genética , Metionina/metabolismo , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Oxígeno/metabolismo , Fosforilasas/genética , Fosforilasas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Rhodospirillum rubrum/genéticaRESUMEN
Thermostabilizing enzymes while retaining their activity and enantioselectivity for applied biocatalysis is an important topic in protein engineering. Rational and computational design strategies as well as directed evolution have been used successfully to thermostabilize enzymes. Herein, we describe an alternative mutability-landscape approach that identified three single mutations (R11Y, R11I and A33D) within the enzyme 4-oxalocrotonate tautomerase (4-OT), which has potential as a biocatalyst for pharmaceutical synthesis, that gave rise to significant increases in apparent melting temperature Tm (up to 20 °C) and in half-life at 80 °C (up to 111-fold). Introduction of these beneficial mutations in an enantioselective but thermolabile 4-OT variant (M45Y/F50A) afforded improved triple-mutant enzyme variants showing an up to 39 °C increase in Tm value, with no reduction in catalytic activity or enantioselectivity. This study illustrates the power of mutability-landscape-guided protein engineering for thermostabilizing enzymes.
Asunto(s)
Isomerasas/metabolismo , Temperatura , Estabilidad de Enzimas , Isomerasas/genética , Mutación , Ingeniería de ProteínasRESUMEN
The enzyme 4-oxalocrotonate tautomerase (4-OT) can promiscuously catalyze various carboligation reactions using acetaldehyde as a nucleophile. However, the highly reactive nature of acetaldehyde requires intricate handling, which can impede its usage in practical synthesis. Therefore, we investigated three enzymatic routes to synthesize acetaldehyde in situ in one-pot cascade reactions with 4-OT. Two routes afforded practical acetaldehyde concentrations, using an environmental pollutant, trans-3-chloroacrylic acid, or a bio-renewable, ethanol, as starting substrate. These routes can be combined with 4-OT catalyzed Michael-type additions and aldol condensations in one pot. This modular systems biocatalysis methodology provides a stepping stone towards the development of larger artificial metabolic networks for the practical synthesis of important chemical synthons.
Asunto(s)
Acetaldehído/metabolismo , Isomerasas/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Biocatálisis , Isomerasas/genética , Proteínas Mutantes/genéticaRESUMEN
Enzymes have evolved to function under aqueous conditions and may not exhibit features essential for biocatalytic application, such as the ability to function in high concentrations of an organic solvent. Consequently, protein engineering is often required to tune an enzyme for catalysis in non-aqueous solvents. In this study, we have used a collection of nearly all single mutants of 4-oxalocrotonate tautomerase, which promiscuously catalyzes synthetically useful Michael-type additions of acetaldehyde to various nitroolefins, to investigate the effect of each mutation on the ability of this enzyme to retain its "Michaelase" activity in elevated concentrations of ethanol. Examination of this mutability landscape allowed the identification of two hotspot positions, Ser30 and Ala33, at which mutations are beneficial for catalysis in high ethanol concentrations. The "hotspot" position Ala33 was then randomized in a highly enantioselective, but ethanol-sensitive 4-OT variant (L8F/M45Y/F50A) to generate an improved enzyme variant (L8F/A33I/M45Y/F50A) that showed great ethanol stability and efficiently catalyzes the enantioselective addition of acetaldehyde to nitrostyrene in 40 % ethanol (permitting high substrate loading) to give the desired γ-nitroaldehyde product in excellent isolated yield (89 %) and enantiopurity (ee=98 %). The presented work demonstrates the power of mutability-landscape-guided enzyme engineering for efficient biocatalysis in non-aqueous solvents.
Asunto(s)
Etanol/farmacología , Isomerasas/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Ingeniería de Proteínas/métodos , Solventes/farmacología , Biocatálisis , Isomerasas/genética , Proteínas Mutantes/genética , EstereoisomerismoRESUMEN
Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible ( http://efi.igb.illinois.edu/efi-est/ ), so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.
Asunto(s)
Pentosas/metabolismo , Biocatálisis , Humanos , Isomerasas/genética , Isomerasas/metabolismo , Modelos Moleculares , Pentosas/químicaRESUMEN
Phosphoribosyl anthranilate isomerase is involved in the isomerization of phosphoribosyl anthranilate to 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate. In the present study, trpFGt, a gene encoding phosphoribosyl anthranilate isomerase from Geobacillus thermopakistaniensis, was cloned and expressed in Escherichia coli. The gene product, TrpFGt, was produced in E. coli in soluble and active form. Molecular characterization revealed that recombinant TrpFGt was highly efficient and stable. The apparent Vmax and Km values were 480⯵molâ¯min-1 mg-1 and 1.15⯵M, respectively. The half-life of the enzyme was 90â¯minâ¯at 60⯰C. Apart from thermostability, TrpFGt was highly stable against protein denaturants such as urea. There was no significant change in activity even after treatment with 8â¯M urea. To the best of our knowledge, TrpFGt, is the most active and stable phosphoribosyl anthranilate isomerase characterized to date and this is the first characterization of TrpF from the genus Geobacillus.
Asunto(s)
Geobacillus/enzimología , Geobacillus/genética , Isomerasas/genética , ortoaminobenzoatos/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Vectores Genéticos , Isomerasas/química , Conformación Proteica , Desnaturalización Proteica , Estabilidad Proteica , TermodinámicaRESUMEN
AIMS: To investigate the genetic determinates for conjugated linolenic acid (CLNA) production in Lactobacillus plantarum ZS2058, a high CLNA producer. METHODS AND RESULTS: After culturing with α-linolenic acid (ALA) in the medium, the fatty acid compositions of supernatant fluid and cell pellets were analysed via GC-MS. cis9,trans11,cis15-CLNA was identified to be the predominant isomer. And during CLNA production, 10-hydroxy-cis12-cis15-octadecenoic acid (10-HOEA) and 10-oxo-cis12-cis15-octadecenoic acid (10-OXOA) were accumulated. The E. coli recombinants harbouring genes encoding myosin-cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC), respectively, were analysed for their roles in CLNA production. The results indicated that MCRA converted ALA to 10-HOEA, following converted to 10-OXOA by DH. While with the combination of three recombinants, ALA could be transformed into CLNA plus 10-HOEA and 10-OXOA. When the three genes were deleted, none of the L. plantarum ZS2058 knockout mutants could produce any CLNA, after complementation, and all the complementary mutants recovered the CLNA-production ability at similar levels as the wild strain. CONCLUSIONS: Lactobacillus plantarum ZS2058 produced CLNA from ALA with 10-HOEA and 10-OXOA as intermediates. The triple-component isomerase of MCRA, DH and DC was the unique genetic determinant for CLNA generation. SIGNIFICANCE AND IMPACT OF THE STUDY: The current results firstly provided conclusive evidence that the triple-component isomerase complex was shared by both CLA and CLNA production in lactobacilli.