RESUMEN
Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.
Asunto(s)
Antidepresivos/farmacología , Factor 4E Eucariótico de Iniciación/metabolismo , Ketamina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/clasificación , Neuronas/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transmisión Sináptica/efectos de los fármacosRESUMEN
Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.
Asunto(s)
Fenciclidina , Ratas Sprague-Dawley , Animales , Masculino , Ratones , Fenciclidina/análogos & derivados , Fenciclidina/toxicidad , Ratas , Psicosis Inducidas por Sustancias/etiología , Ciclohexilaminas , Actividad Motora/efectos de los fármacos , Cognición/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Locomoción/efectos de los fármacos , Drogas Ilícitas/efectos adversos , Drogas Ilícitas/toxicidad , Ketamina/análogos & derivados , Ketamina/toxicidad , Trastornos Relacionados con Sustancias/psicología , Abuso de FenciclidinaRESUMEN
OBJECTIVE: We sought to explore relationships of acute dissociative effects of intravenous ketamine with change in depression and suicidal ideation and with plasma metabolite levels in a randomized, midazolam-controlled trial. METHODS: Data from a completed trial in suicidal, depressed participants (n = 40) randomly assigned to ketamine was used to examine relationships between ketamine treatment-emergent dissociative and psychotomimetic symptoms with pre/post-infusion changes in suicidal ideation and depression severity. Nonparametric correlational statistics were used. These methods were also used to explore associations between dissociative or psychotomimetic symptoms and blood levels of ketamine and metabolites in a subset of participants (n = 28) who provided blood samples immediately post-infusion. RESULTS: Neither acute dissociative nor psychotomimetic effects of ketamine were associated with changes in suicidal ideation or depressive symptoms from pre- to post-infusion. Norketamine had a trend-level, moderate inverse correlation with dissociative symptoms on Day 1 post-injection (P = .064; P =.013 removing 1 outlier). Dehydronorketamine correlated with Clinician-Administered Dissociative States Scale scores at 40 minutes (P = .034), 230 minutes (P = .014), and Day 1 (P = .012). CONCLUSION: We did not find evidence that ketamine's acute, transient dissociative, or psychotomimetic effects are associated with its antidepressant or anti-suicidal ideation actions. The correlation of higher plasma norketamine with lower dissociative symptoms on Day 1 post-treatment suggests dissociation may be more an effect of the parent drug.
Asunto(s)
Antidepresivos , Trastornos Disociativos , Ketamina , Ketamina/análogos & derivados , Midazolam , Ideación Suicida , Humanos , Ketamina/administración & dosificación , Ketamina/sangre , Ketamina/farmacología , Masculino , Adulto , Midazolam/administración & dosificación , Midazolam/farmacología , Midazolam/sangre , Femenino , Antidepresivos/sangre , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Trastornos Disociativos/inducido químicamente , Trastornos Disociativos/sangre , Persona de Mediana Edad , Adulto Joven , Método Doble CiegoRESUMEN
Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.
Asunto(s)
Ketamina , Ketamina/análogos & derivados , Humanos , Ratones , Animales , Ketamina/farmacología , Ketamina/metabolismo , Depresión/tratamiento farmacológico , Depresión/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones Noqueados , Antidepresivos/farmacologíaRESUMEN
BACKGROUND: The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS: All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,4-Tetrahydro-6-nitro-2,3-dioxobenzo [f]quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS: No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS: (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected glutamate, potassium, calcium, and BDNF pathways in the hippocampus. At 10 mg/kg, (2R,6R)-HNK demonstrated a greater antiallodynic effect in models of chronic compared with acute pain. Protein analysis in the hippocampus suggests that AMPA-dependent alterations in BDNF-TrkB and Kv2.1 pathways may be involved in the antiallodynic effect of (2R,6R)-HNK.
Asunto(s)
Ketamina , Animales , Femenino , Masculino , Ratones , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacología , Hipocampo , Ketamina/farmacología , Ketamina/análogos & derivados , Naloxona , Dolor/metabolismoRESUMEN
INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.
Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Hipocampo , Ketamina , Ratones Transgénicos , Plasticidad Neuronal , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ratones , Potenciación a Largo Plazo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Memoria/efectos de los fármacos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , HumanosRESUMEN
Ketamine is an injectable anesthetic agent with analgesic and antidepressant effects that can prevent maladaptive pain. Ketamine is metabolized by the liver into norketamine, an active metabolite. Prior rodent studies have suggested that norketamine is thought to contribute up to 30% of ketamine's analgesic effect. Ketamine is usually administered as an intravenous (IV) bolus injection or continuous rate infusion (CRI) but can be administered subcutaneously (SC) and intramuscularly (IM). The Omnipod® is a wireless, subcutaneous insulin delivery device that adheres to the skin and delivers insulin as an SC CRI. The Omnipod® was used in dogs for postoperative administration of ketamine as a 1 mg/kg infusion bolus (IB) over 1 hour (h). Pharmacokinetics (PK) showed plasma ketamine concentrations between 42 and 326.1 ng/mL. The median peak plasma concentration was 79.5 (41.9-326.1) ng/mL with a Tmax of 60 (30-75) min. After the same infusion bolus, the corresponding norketamine PK showed plasma drug concentrations between 22.0 and 64.8 ng/mL. The median peak plasma concentration was 43.0 (26.1-71.8) ng/mL with a median Tmax of 75 min. The median peak ketamine plasma concentration exceeded 100 ng/mL in dogs for less than 1 h post infusion. The Omnipod® system successfully delivered subcutaneous ketamine to dogs in the postoperatively.
Asunto(s)
Ketamina , Animales , Perros , Ketamina/farmacocinética , Ketamina/administración & dosificación , Ketamina/análogos & derivados , Ketamina/sangre , Masculino , Inyecciones Subcutáneas/veterinaria , Femenino , Analgésicos/farmacocinética , Analgésicos/administración & dosificación , Analgésicos/sangre , Área Bajo la Curva , SemividaRESUMEN
Commonly used pain therapeutics, such as opioid medications, exert dangerous side effects and lack effectiveness in treating some types of pain. Ketamine is also used to treat pain, but side effects limit its widespread use. (2R,6R)-hydroxynorketamine (HNK) is a ketamine metabolite that potentially shares some beneficial behavioral effects of its parent drug without causing significant side effects. This study compared the profile and potential mechanisms mediating the antinociception activity of ketamine and (2R,6R)-HNK in C57BL/6J mice. Additionally, this study compared the reversal of mechanical allodynia by (2R,6R)-HNK with gabapentin in a model of neuropathic pain. Unlike the near-immediate and short-lived antinociception caused by ketamine, (2R,6R)-HNK produced late-developing antinociception 24 hours following administration. Pharmacological blockade of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors with 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) prevented the initiation and expressionof (2R,6R)-HNK antinociception, suggesting the involvement of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-dependent glutamatergic mechanisms in the pain reduction-like responses. Blockade of opioid receptors with naltrexone partially prevented the antinociceptive effect of ketamine but was ineffective against (2R,6R)-HNK. Furthermore, (2R,6R)-HNK did not produce dystaxia, even when tested at doses five times greater than those needed to produce antinociception, indicating a superior safety profile for (2R,6R)-HNK over ketamine. Additionally, (2R,6R)-HNK reversed mechanical allodynia in a spared nerve injury model of neuropathic pain with similar short-term efficacy to gabapentin (within 4 hours) while outperforming gabapentin 24 hours after administration. These findings support the further study of (2R,6R)-HNK as a potentially valuable agent for treating different types of pain and establish certain advantages of (2R,6R)-HNK treatment over ketamine and gabapentin in corresponding assays for pain. SIGNIFICANCE STATEMENT: The ketamine metabolite (2R,6R)-HNK produced antinociception in male and female mice 24 hours after administration via activation of AMPA receptors. The effects of (2R,6R)-HNK differed in time course and mechanism and presented a better safety profile than ketamine. (2R,6R)-HNK also reversed allodynia in SNI-operated animals within 4 hours of treatment onset, with a duration of effect lasting longer than gabapentin. Taken together, (2R,6R)-HNK demonstrates the potential for development as a non-opioid analgesic drug.
Asunto(s)
Ketamina , Neuralgia , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antidepresivos/farmacología , Femenino , Gabapentina/farmacología , Hiperalgesia , Isoxazoles , Ketamina/análogos & derivados , Ketamina/farmacología , Ketamina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/tratamiento farmacológico , Receptores AMPARESUMEN
Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.
Asunto(s)
Antidepresivos/metabolismo , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/metabolismo , Animales , Antidepresivos/efectos adversos , Femenino , Ketamina/efectos adversos , Ketamina/farmacología , Masculino , Ratones , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de TiempoRESUMEN
BACKGROUND: Preclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a chronic restraint stress (CRS) mouse model. METHODS: C57BL/6 male mice were subjected to CRS for 8 h per day for 14 consecutive days. Open field, forced swimming, novelty suppressed feeding, and tail suspension tests were performed after administering (2R,6R)-HNK (10 mg/kg), a combination of (2R,6R)-HNK and NBQX (an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist; 10 mg/kg), or a combination of (2R,6R)-HNK and ANA-12 (a TrkB receptor antagonist; 0.5 mg/kg). The mRNA levels of Bdnf and Narp in the hippocampus were determined by quantitative reverse transcription-PCR (qRT-PCR). Western blotting was used to determine the hippocampal protein levels of GluA1, GluA2, BDNF, Narp, PSD95, and synaptophysin, as well as the p-TrkB/TrkB protein ratio. RESULTS: (2R,6R)-HNK had rapid antidepressant-like effects in CRS mice. Furthermore, (2R,6R)-HNK significantly ameliorated CRS-induced downregulation of GluA1, GluA2, BDNF, Narp, PSD95, and the p-TrkB/TrkB protein ratio in the hippocampus. The effects of (2R,6R)-HNK were blocked by combinations with NBQX or ANA-12. CONCLUSION: BDNF-TrkB signaling-mediated upregulation of Narp in the hippocampus may play a key role in the antidepressant-like effect of (2R,6R)-HNK in the CRS model of depression.
Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Proteína C-Reactiva , Depresión , Ketamina , Proteínas del Tejido Nervioso , Receptor trkB , Animales , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Ketamina/análogos & derivados , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Receptor trkB/metabolismo , Regulación hacia ArribaRESUMEN
Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces rapid and long-lasting antidepressant effects in major depressive disorder (MDD) patients. (2R,6R)-Hydroxynorketamine [(2R,6R)-HNK], a metabolite of ketamine, is reported to produce rapid antidepressant effects in rodent models without the side effects of ketamine. Importantly, (2R,6R)-HNK does not block NMDA receptors like ketamine, and the molecular signaling mechanisms for (2R,6R)-HNK remain unknown. Here, we examined the involvement of BDNF/TrkB/mechanistic target of rapamycin complex 1 (mTORC1) signaling in the antidepressant actions of (2R,6R)-HNK. Intramedial prefrontal cortex (intra-mPFC) infusion or systemic (2R,6R)-HNK administration induces rapid and long-lasting antidepressant effects in behavioral tests, identifying the mPFC as a key region for the actions of (2R,6R)-HNK. The antidepressant actions of (2R,6R)-HNK are blocked in mice with a knockin of the BDNF Val66Met allele (which blocks the processing and activity-dependent release of BDNF) or by intra-mPFC microinjection of an anti-BDNF neutralizing antibody. Blockade of L-type voltage-dependent Ca2+ channels (VDCCs), required for activity-dependent BDNF release, also blocks the actions of (2R,6R)-HNK. Intra-mPFC infusion of pharmacological inhibitors of TrkB or mTORC1 signaling, which are downstream of BDNF, also block the actions of (2R,6R)-HNK. Moreover, (2R,6R)-HNK increases synaptic function in the mPFC. These findings indicate that activity-dependent BDNF release and downstream TrkB and mTORC1 signaling, which increase synaptic function in the mPFC, are required for the rapid and long-lasting antidepressant effects of (2R,6R)-HNK, supporting the potential use of this metabolite for the treatment of MDD.
Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ketamina/análogos & derivados , Animales , Células Cultivadas , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ketamina/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacosRESUMEN
Ketamine-associated cystitis is characterized by suburothelial inflammation and urothelial cell death. Norketamine (NK), the main metabolite of ketamine, is abundant in urine following ketamine exposure. NK has been speculated to exert toxic effects in urothelial cells, similarly to ketamine. However, the molecular mechanisms contributing to NK-induced urothelial cytotoxicity are almost unclear. Here, we aimed to investigate the toxic effects of NK and the potential mechanisms underlying NK-induced urothelial cell injury. In this study, NK exposure significantly reduced cell viability and induced apoptosis in human urinary bladder epithelial-derived RT4 cells that NK (0.01-0.5 mM) exhibited greater cytotoxicity than ketamine (0.1-3 mM). Signals of mitochondrial dysfunction, including mitochondrial membrane potential (MMP) loss and cytosolic cytochrome c release, were found to be involved in NK-induced cell apoptosis and death. NK exposure of cells also triggered the expression of endoplasmic reticulum (ER) stress-related proteins including GRP78, CHOP, XBP-1, ATF-4 and -6, caspase-12, PERK, eIF-2α, and IRE-1. Pretreatment with 4-phenylbutyric acid (an ER stress inhibitor) markedly prevented the expression of ER stress-related proteins and apoptotic events in NK-exposed cells. Additionally, NK exposure significantly activated JNK, ERK1/2, and p38 signaling and increased intracellular calcium concentrations ([Ca2+]i). Pretreatment of cells with both PD98059 (an ERK1/2 inhibitor) and BAPTA/AM (a cell-permeable Ca2+ chelator), but not SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor), effectively suppressed NK-induced mitochondrial dysfunction, ER stress-related signals, and apoptotic events. The elevation of [Ca2+]i in NK-exposed cells could be obviously inhibited by BAPTA/AM, but not PD98059. Taken together, these findings suggest that NK exposure exerts urothelial cytotoxicity via a [Ca2+]i-regulated ERK1/2 activation, which is involved in downstream mediation of the mitochondria-dependent and ER stress-triggered apoptotic pathway, consequently resulting in urothelial cell death. Our findings suggest that regulating [Ca2+]i/ERK signaling pathways may be a promising strategy for treatment of NK-induced urothelial cystitis.
Asunto(s)
Cistitis , Ketamina , Apoptosis , Estrés del Retículo Endoplásmico , Femenino , Humanos , Ketamina/análogos & derivados , Ketamina/farmacología , Sistema de Señalización de MAP Quinasas , Masculino , Mitocondrias/metabolismoRESUMEN
PURPOSE: The recent repurposing of ketamine as treatment for pain and depression has increased the need for accurate population pharmacokinetic (PK) models to inform the design of new clinical trials. Therefore, the objectives of this study were to externally validate available PK models on (S)-(nor)ketamine concentrations with in-house data and to improve the best performing model when necessary. METHODS: Based on predefined criteria, five models were selected from literature. Data of two previously performed clinical trials on (S)-ketamine administration in healthy volunteers were available for validation. The predictive performances of the selected models were compared through visual predictive checks (VPCs) and calculation of the (root) mean (square) prediction errors (ME and RMSE). The available data was used to adapt the best performing model through alterations to the model structure and re-estimation of inter-individual variability (IIV). RESULTS: The model developed by Fanta et al. (Eur J Clin Pharmacol 71:441-447, 2015) performed best at predicting the (S)-ketamine concentration over time, but failed to capture the (S)-norketamine Cmax correctly. Other models with similar population demographics and study designs had estimated relatively small distribution volumes of (S)-ketamine and thus overpredicted concentrations after start of infusion, most likely due to the influence of circulatory dynamics and sampling methodology. Model predictions were improved through a reduction in complexity of the (S)-(nor)ketamine model and re-estimation of IIV. CONCLUSION: The modified model resulted in accurate predictions of both (S)-ketamine and (S)-norketamine and thereby provides a solid foundation for future simulation studies of (S)-(nor)ketamine PK in healthy volunteers after (S)-ketamine infusion.
Asunto(s)
Ketamina/análogos & derivados , Ketamina/farmacocinética , Modelos Biológicos , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
PURPOSE: Ketamine has rapid-onset antidepressant effects in patients with treatment-resistant depression. Common side effects include dissociation (a sense of detachment from reality) and increases in systolic and diastolic blood pressure. The objective of this structured review was to examine the effect of ketamine formulation and route of administration on its pharmacokinetics, safety and tolerability, to identify formulation characteristics and routes of administration that might minimise side effects. METHODS: This was a structured review of published ketamine pharmacokinetics, safety and tolerability data for any ketamine formulation. The ratio of ketamine:norketamine was calculated from reported Cmax values, as a measure of first pass metabolism. The effect of formulation and route of administration on safety was evaluated by measuring mean changes in systolic blood pressure and tolerability by changes in dissociation ratings. Data were correlated using Spearman's method. RESULTS: A total of 41 treatment arms were identified from 21 publications, and included formulation development studies in healthy volunteers, and studies in clinical populations (patients undergoing anaesthesia, or being treated for pain or depression). Ketamine:norketamine ratios were strongly positively correlated with change in dissociation ratings (r = 0.89) and change in blood pressure (r = 0.96), and strongly negatively correlated with ketamine Tmax (r = - 0.87; p < 0.00001 for all). Ketamine Tmax strongly positively correlated with a change in dissociation ratings (r = - 0.96) and change in blood pressure (r = - 0.99; p < 0.00001 for all). CONCLUSION: Ketamine formulations that maximize first pass metabolism and delay Tmax will be better tolerated and safer than formulations which lack those characteristics.
Asunto(s)
Antidepresivos/administración & dosificación , Antidepresivos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Ketamina/administración & dosificación , Ketamina/efectos adversos , Antidepresivos/farmacocinética , Trastornos Disociativos/inducido químicamente , Vías de Administración de Medicamentos , Humanos , Hipertensión/inducido químicamente , Ketamina/análogos & derivados , Ketamina/sangre , Ketamina/farmacocinética , Tasa de Depuración MetabólicaRESUMEN
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Asunto(s)
Analgésicos/farmacología , Anestésicos/farmacología , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Analgésicos/uso terapéutico , Anestésicos/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Humanos , Ketamina/uso terapéuticoRESUMEN
Ketamine, a dissociative anesthetic, is experiencing a clinical resurgence as a fast-acting antidepressant. In the central nervous system, ketamine acts primarily by blocking NMDA receptor currents. Although it is generally safe in a clinical setting, it can be addictive, and several of its derivatives are being investigated as preferable alternatives. 2R,6R-Hydroxynorketamine (HNK), a ketamine metabolite, reproduces some of the therapeutic effects of ketamine and appears to lack abuse liability. Here, we report a systematic investigation of the effects of HNK on macroscopic responses elicited from recombinant NMDA receptors expressed in human embryonic kidney 293 cells. We found that, like ketamine, HNK reduced NMDA receptor currents in a dose-, pH-, and voltage-dependent manner. Relative to ketamine, it had 100-fold-lower potency (46 µM at pH 7.2), 10-fold-slower inhibition onset, slower apparent dissociation rate, weaker voltage dependence, and complete competition by magnesium. Notably, HNK inhibition was fully effective when applied to resting receptors. These results revealed unexpected properties of hydroxynorketamine that warrant its further investigation as a possible therapeutic in pathologies associated with NMDA receptor dysfunction. SIGNIFICANCE STATEMENT: NMDA receptors are excitatory ion channels with fundamental roles in synaptic transmission and plasticity, and their dysfunction associates with severe neuropsychiatric disorders. 2R,6R-Hydroxynorketamine, a metabolite of ketamine, mimics some of the neuroactive properties of ketamine and may lack its abuse liability. Results show that 2R,6R-hydroxynorketamine blocks NMDA receptor currents with low affinity and weak voltage dependence and is effective when applied to resting receptors. These properties highlight its effectiveness to a subset of NMDA receptor responses and recommend it for further investigation.
Asunto(s)
Antidepresivos/farmacología , Ciclohexanos/farmacología , Ketamina/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Antidepresivos/química , Ciclohexanos/química , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratas , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacosRESUMEN
PURPOSE/BACKGROUND: Ketamine (K) is used as a party drug with hallucinogenic properties with a half-life of about 2.5 hours. Data are available with respect to the detection window (ie, when a person is still tested positive for the drug and/or metabolite after use) of K after single use. Nevertheless, no data are available with respect to the detection window of K in urine after chronic use. METHODS/PROCEDURES: This retrospective case series describes 7 patients with K dependency as their main addiction who have been admitted to an addiction center for K detoxification. Their abstinence-oriented care involved routine urinary screening of K and its metabolites, as well as traditional drugs of abuse, such as cocaine and cannabinoids. FINDINGS/RESULTS: Urine samples remained positive for all the cases identified after 22 to 96 days. A peak detection period of 61, 40, and 96 days for K, norketamine, and dehydronorketamine, respectively, measured using liquid chromatography-tandem mass spectrometry at a cutoff concentration of 1.0 ng/mL, is defined. The K/norketamine and K/dehydronorketamine ratios varied over time between 0.33 and 3.06, and 0.01 and 0.36 for all patients, respectively, implying a large interindividual variation in K metabolism. IMPLICATIONS/CONCLUSIONS: Ketamine and its metabolites have a prolonged excretion profile in urine, which requires frequent measurements (at least weekly) to guide abstinence treatment. Further research is needed to develop an algorithm that can differentiate new K use from residual urinary K excretion in urine of chronic daily users.
Asunto(s)
Ketamina/análogos & derivados , Ketamina/administración & dosificación , Ketamina/orina , Detección de Abuso de Sustancias/métodos , Adulto , Femenino , Humanos , Ketamina/farmacocinética , Masculino , Estudios Retrospectivos , Factores de Tiempo , Adulto JovenRESUMEN
BACKGROUND: Recent studies show activity of ketamine metabolites, such as hydroxynorketamine, in producing rapid relief of depression-related symptoms and analgesia. To improve our understanding of the pharmacokinetics of ketamine and metabolites norketamine, dehydronorketamine, and hydroxynorketamine, we developed a population pharmacokinetic model of ketamine and metabolites after i.v. administration of racemic ketamine and the S-isomer (esketamine). Pharmacokinetic data were derived from an RCT on the efficacy of sodium nitroprusside (SNP) in reducing the psychotomimetic side-effects of ketamine in human volunteers. METHODS: Three increasing i.v. doses of esketamine and racemic ketamine were administered to 20 healthy volunteers, and arterial plasma samples were obtained for measurement of ketamine and metabolites. Subjects were randomised to receive esketamine/SNP, esketamine/placebo, racemic ketamine/SNP, and racemic ketamine/placebo on four separate occasions. The time-plasma concentration data of ketamine and metabolites were analysed using a population compartmental model approach. RESULTS: The pharmacokinetics of ketamine and metabolites were adequately described by a seven-compartment model with two ketamine, norketamine, and hydroxynorketamine compartments and one dehydronorketamine compartment with metabolic compartments in-between ketamine and norketamine, and norketamine and dehydronorketamine main compartments. Significant differences were found between S- and R-ketamine enantiomer pharmacokinetics, with up to 50% lower clearances for the R-enantiomers, irrespective of formulation. Whilst SNP had a significant effect on ketamine clearances, simulations showed only minor effects of SNP on total ketamine pharmacokinetics. CONCLUSIONS: The model is of adequate quality for use in future pharmacokinetic and pharmacodynamic studies into the efficacy and side-effects of ketamine and metabolites. CLINICAL TRIAL REGISTRATION: Dutch Cochrane Center 5359.
Asunto(s)
Anestésicos Disociativos/farmacocinética , Ketamina/farmacocinética , Adulto , Anestésicos Disociativos/administración & dosificación , Biotransformación , Simulación por Computador , Estudios Cruzados , Método Doble Ciego , Composición de Medicamentos , Femenino , Humanos , Inyecciones Intravenosas , Ketamina/administración & dosificación , Ketamina/análogos & derivados , Ketamina/sangre , Ketamina/química , Masculino , Modelos Teóricos , Nitroprusiato/uso terapéutico , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/psicología , Estereoisomerismo , Adulto JovenRESUMEN
BACKGROUND: Rapid-acting antidepressants ketamine and (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) have overcome some of the major limitations of classical antidepressants. However, little is known about sex-specific differences in the behavioral and molecular effects of ketamine and (2R,6R)-HNK in rodents. METHODS: We treated mice with an intraperitoneal injection of either saline, ketamine (30 mg kg-1) or (2R,6R)-HNK (10 mg kg-1). We performed a comprehensive behavioral test battery to characterize the Arc-CreERT2 × CAG-Sun1/sfGFP mouse line which enables targeted recombination in active populations. We performed a molecular study in Arc-CreERT2 × CAG-Sun1/sfGFP female mice using both immunohistochemistry and in situ hybridization. RESULTS: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in sociability and anxiety tests. Moreover, ketamine and (2R,6R)-HNK had opposite effects in the forced swim test (FST) depending on gender. In addition, in male mice, ketamine-treated animals were less immobile compared to (2R,6R)-HNK, thus showing a different profile of the two drugs in the FST. At the molecular level we identified Bdnf mRNA level to be increased after ketamine treatment in female mice. CONCLUSION: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in social and anxiety behavior and a different pattern between ketamine and (2R,6R)-HNK in the FST in male and female mice. At the molecular level, female mice treated with ketamine showed an increase of Bdnf mRNA level, as previously observed in male mice.
Asunto(s)
Conducta Animal , Ketamina/análogos & derivados , Ketamina/administración & dosificación , Neuronas/metabolismo , Recombinación Genética , Caracteres Sexuales , Animales , Ansiedad/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Masculino , Memoria Episódica , Ratones Transgénicos , Conducta SocialRESUMEN
OBJECTIVE: To describe the pharmacokinetics of ketamine following a short intravenous (IV) infusion to isoflurane-anesthetized rabbits. STUDY DESIGN: Prospective experimental study. ANIMALS: A total of six adult healthy female New Zealand White rabbits. METHODS: Anesthesia was induced with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the isoflurane concentration was reduced to 0.75 MAC and ketamine hydrochloride (5 mg kg-1) was administered IV over 5 minutes. Blood samples were collected before and at 2, 5, 6, 7, 8, 9, 13, 17, 21, 35, 65, 125, 215 and 305 minutes after initiating the ketamine infusion. Samples were processed immediately and the plasma separated and stored at -80 °C until analyzed for ketamine and norketamine concentrations using liquid chromatography-mass spectrometry. Compartment models were fitted to the concentration-time data for ketamine and for ketamine plus norketamine using nonlinear mixed-effects (population) modeling. RESULTS: A three- and five-compartment model best fitted the plasma concentration-time data for ketamine and for ketamine plus norketamine, respectively. For the ketamine only model, the volume of distribution at steady state (Vss) was 3217 mL kg-1, metabolic clearance was 88 mL minute-1 kg-1 and the terminal half-life was 59 minutes. For the model including both ketamine and norketamine, Vss were 3224 and 2073 mL kg-1, total metabolic clearance was 107 and 52 mL minute-1 kg-1 and terminal half-lives were 52 and 55 minutes for the parent drug and its metabolite, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: This study characterized the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized New Zealand White rabbits following short IV infusion. The results obtained herein will be useful to determine ketamine infusion regimens in isoflurane-anesthetized rabbits.