RESUMEN
Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.
Asunto(s)
Linaje de la Célula , Implantación del Embrión , Desarrollo Embrionario , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Diferenciación Celular , Estratos Germinativos/citología , Estratos Germinativos/enzimología , Células Madre Embrionarias Humanas/citología , Placenta/citología , Células Madre Pluripotentes/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Saco Vitelino/citología , Saco Vitelino/embriologíaRESUMEN
Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.
Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células MadreRESUMEN
Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms1,2 that do not recapitulate the in vivo conditions3-5. Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Línea Primitiva/citología , Línea Primitiva/embriología , Amnios/citología , Amnios/embriología , Blastocisto/citología , Diferenciación Celular , Linaje de la Célula , Polaridad Celular , Colágeno , Combinación de Medicamentos , Epitelio/embriología , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Laminina , Proteoglicanos , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Transcriptoma , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriologíaRESUMEN
Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction1,2. However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis3-5. Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis6,7. However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior-posterior axis8,9 further regulates basement membrane remodelling by localizing Nodal signalling-and therefore the activity of matrix metalloproteinases and basement membrane perforations-to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation.
Asunto(s)
Membrana Basal/embriología , Membrana Basal/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Animales , Membrana Basal/citología , Blastocisto/citología , Blastocisto/metabolismo , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Gástrula/embriología , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ligandos de Señalización Nodal/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Línea Primitiva/metabolismoRESUMEN
Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.
Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Gastrulación , Organogénesis , Análisis de la Célula Individual , Animales , Linaje de la Célula/genética , Quimera/embriología , Quimera/genética , Quimera/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Endotelio/citología , Endotelio/embriología , Endotelio/metabolismo , Femenino , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Mutación/genética , Células Mieloides/citología , Organogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Proteína 1 de la Leucemia Linfocítica T Aguda/deficiencia , Proteína 1 de la Leucemia Linfocítica T Aguda/genéticaRESUMEN
Anterior mesoderm (AM) and definitive endoderm (DE) progenitors represent the earliest embryonic cell types that are specified during germ layer formation at the primitive streak (PS) of the mouse embryo. Genetic experiments indicate that both lineages segregate from Eomes-expressing progenitors in response to different Nodal signaling levels. However, the precise spatiotemporal pattern of the emergence of these cell types and molecular details of lineage segregation remain unexplored. We combined genetic fate labeling and imaging approaches with single-cell RNA sequencing (scRNA-seq) to follow the transcriptional identities and define lineage trajectories of Eomes-dependent cell types. Accordingly, all cells moving through the PS during the first day of gastrulation express Eomes AM and DE specification occurs before cells leave the PS from Eomes-positive progenitors in a distinct spatiotemporal pattern. ScRNA-seq analysis further suggested the immediate and complete separation of AM and DE lineages from Eomes-expressing cells as last common bipotential progenitor.
Asunto(s)
Linaje de la Célula , Endodermo/citología , Endodermo/metabolismo , Gastrulación , Mesodermo/citología , Mesodermo/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Ratones , Modelos Biológicos , Línea Primitiva/embriología , Línea Primitiva/metabolismo , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Tiempo , Transcripción GenéticaRESUMEN
The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease.
Asunto(s)
Linaje de la Célula/genética , Corazón/embriología , Línea Primitiva/embriología , Animales , Linaje de la Célula/fisiología , Femenino , Gástrula , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/fisiología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Masculino , Mesodermo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Línea Primitiva/fisiología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodosRESUMEN
The elongating mouse anteroposterior axis is supplied by progenitors with distinct tissue fates. It is not known whether these progenitors confer anteroposterior pattern to the embryo. We have analysed the progenitor population transcriptomes in the mouse primitive streak and tail bud throughout axial elongation. Transcriptomic signatures distinguish three known progenitor types (neuromesodermal, lateral/paraxial mesoderm and notochord progenitors; NMPs, LPMPs and NotoPs). Both NMP and LPMP transcriptomes change extensively over time. In particular, NMPs upregulate Wnt, Fgf and Notch signalling components, and many Hox genes as progenitors transit from production of the trunk to the tail and expand in number. In contrast, the transcriptome of NotoPs is stable throughout axial elongation and they are required for normal axis elongation. These results suggest that NotoPs act as a progenitor niche whereas anteroposterior patterning originates within NMPs and LPMPs.
Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Mesodermo/embriología , Notocorda/embriología , Transducción de Señal/fisiología , Animales , Embrión de Mamíferos/citología , Mesodermo/citología , Ratones , Ratones Transgénicos , Notocorda/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Receptores Notch/genética , Receptores Notch/metabolismoRESUMEN
Long-range signaling by morphogens and their inhibitors define embryonic patterning yet quantitative data and models are rare, especially in humans. Here, we use a human embryonic stem cell micropattern system to model formation of the primitive streak (PS) by WNT. In the pluripotent state, E-cadherin (E-CAD) transduces boundary forces to focus WNT signaling to the colony border. Following application of WNT ligand, E-CAD mediates a front or wave of epithelial-to-mesenchymal (EMT) conversion analogous to PS extension in an embryo. By knocking out the secreted WNT inhibitors active in our system, we show that DKK1 alone controls the extent and duration of patterning. The NODAL inhibitor cerberus 1 acts downstream of WNT to refine the endoderm versus mesoderm fate choice. Our EMT wave is a generic property of a bistable system with diffusion and we present a single quantitative model that describes both the wave and our knockout data.
Asunto(s)
Tipificación del Cuerpo , Células Madre Embrionarias Humanas/citología , Línea Primitiva/embriología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular , Linaje de la Célula , Citocinas/metabolismo , Endodermo/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Mesodermo/metabolismo , Ratones , Fenotipo , Células Madre Pluripotentes/citología , Dominios Proteicos , Factor de Crecimiento Transformador beta/metabolismo , Proteína Wnt3A/metabolismoAsunto(s)
Investigaciones con Embriones/ética , Investigaciones con Embriones/legislación & jurisprudencia , Embrión de Mamíferos/embriología , Aborto Espontáneo/genética , Aborto Espontáneo/patología , Aneuploidia , Animales , Blastocisto/citología , Tipificación del Cuerpo , Técnicas de Cultivo de Célula , Anomalías Congénitas , Embrión de Mamíferos/citología , Embrión de Mamíferos/patología , Ética en Investigación , Femenino , Fertilización In Vitro , Gastrulación , Células Madre Embrionarias Humanas/citología , Humanos , Ratones , Modelos Biológicos , Organogénesis , Embarazo , Línea Primitiva/embriología , Factores de TiempoRESUMEN
Snail and Zeb transcription factors induce epithelial-to-mesenchymal transition (EMT) in embryonic and adult tissues by direct repression of E-cadherin transcription. The repression of E-cadherin transcription by the EMT inducers Snail1 and Zeb2 plays a fundamental role in defining embryonic territories in the mouse, as E-cadherin needs to be downregulated in the primitive streak and in the epiblast, concomitant with the formation of mesendodermal precursors and the neural plate, respectively. Here, we show that in the chick embryo, E-cadherin is weakly expressed in the epiblast at pre-primitive streak stages where it is substituted for by P-cadherin We also show that Snail2 and Zeb2 repress P-cadherin transcription in the primitive streak and the neural plate, respectively. This indicates that E- and P-cadherin expression patterns evolved differently between chick and mouse. As such, the Snail1/E-cadherin axis described in the early mouse embryo corresponds to Snail2/P-cadherin in the chick, but both Snail factors and Zeb2 fulfil a similar role in chick and mouse in directly repressing ectodermal cadherin genes to contribute to the delamination of mesendodermal precursors at gastrulation and the proper specification of the neural ectoderm during neural induction.
Asunto(s)
Cadherinas/metabolismo , Proteínas de Homeodominio/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción de la Familia Snail/fisiología , Animales , Embrión de Pollo , Pollos , Regulación hacia Abajo , Ectodermo/metabolismo , Transición Epitelial-Mesenquimal/genética , Gastrulación/genética , Proteínas de Homeodominio/genética , Ratones , Neuronas/metabolismo , Línea Primitiva/embriología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Factores de Transcripción de la Familia Snail/genéticaRESUMEN
During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.
Asunto(s)
Gastrulación/genética , Línea Primitiva/embriología , Análisis de la Célula Individual/métodos , Animales , Embrión de Pollo , Pollos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Línea Primitiva/fisiología , Análisis Espacio-Temporal , Transcriptoma/genéticaRESUMEN
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Asunto(s)
Gástrula/embriología , Placenta/embriología , Línea Primitiva/citología , Línea Primitiva/embriología , Animales , Diferenciación Celular/fisiología , Biología Evolutiva/métodos , Endodermo/embriología , Transición Epitelial-Mesenquimal , Femenino , Gástrula/metabolismo , Proteínas Hedgehog/metabolismo , Mesodermo/embriología , Ratones , Notocorda/embriología , Placenta/metabolismo , Embarazo , Transducción de SeñalRESUMEN
How the fetal-placental arterial connection is made and positioned relative to the embryonic body axis, thereby ensuring efficient and directed blood flow to and from the mother during gestation, is not known. Here we use a combination of genetics, timed pharmacological inhibition in living mouse embryos, and three-dimensional modeling to link two novel architectural features that, at present, have no status in embryological atlases. The allantoic core domain (ACD) is the extraembryonic extension of the primitive streak into the allantois, or pre-umbilical tissue; the vessel of confluence (VOC), situated adjacent to the ACD, is an extraembryonic vessel that marks the site of fetal-placental arterial union. We show that genesis of the fetal-placental connection involves the ACD and VOC in a series of steps, each one dependent upon the last. In the first, Brachyury (T) ensures adequate extension of the primitive streak into the allantois, which in turn designates the allantoic-yolk sac junction. Next, the streak-derived ACD organizes allantoic angioblasts to the axial junction; upon signaling from Fibroblast Growth Factor Receptor-1 (FGFR1), these endothelialize and branch, forming a sprouting VOC that unites the umbilical and omphalomesenteric arteries with the fetal dorsal aortae. Arterial union is followed by the appearance of the medial umbilical roots within the VOC, which in turn designate the correct axial placement of the lateral umbilical roots/common iliac arteries. In addition, we show that the ACD and VOC are conserved across Placentalia, including humans, underscoring their fundamental importance in mammalian biology. We conclude that T is required for correct axial positioning of the VOC via the primitive streak/ACD, while FGFR1, through its role in endothelialization and branching, further patterns it. Together, these genetic, molecular and structural elements safeguard the fetus against adverse outcomes that can result from vascular mispatterning of the fetal-placental arterial connection.
Asunto(s)
Arterias/embriología , Proteínas Fetales/metabolismo , Feto/embriología , Gástrula/irrigación sanguínea , Gástrula/metabolismo , Morfogénesis , Placenta/embriología , Proteínas de Dominio T Box/metabolismo , Alantoides/embriología , Alantoides/metabolismo , Animales , Arterias/metabolismo , Endotelio Vascular/metabolismo , Femenino , Feto/metabolismo , Gástrula/embriología , Ratones , Modelos Biológicos , Placenta/metabolismo , Embarazo , Línea Primitiva/embriología , Línea Primitiva/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Arterias Umbilicales/embriología , Arterias Umbilicales/metabolismo , Remodelación Vascular , Saco Vitelino/metabolismoRESUMEN
During animal gastrulation, the specification of the embryonic axes is accompanied by epithelio-mesenchymal transition (EMT), the first major change in cell shape after fertilization. EMT takes place in disparate topographical arrangements, such as the circular blastopore of amphibians, the straight primitive streak of birds and mammals or in intermediate gastrulation forms of other amniotes such as reptiles. Planar cell movements are prime candidates to arrange specific modes of gastrulation but there is no consensus view on their role in different vertebrate classes. Here, we test the impact of interfering with Rho kinase-mediated cell movements on gastrulation topography in blastocysts of the rabbit, which has a flat embryonic disc typical for most mammals. Time-lapse video microscopy, electron microscopy, gene expression and morphometric analyses of the effect of inhibiting ROCK activity showed - besides normal specification of the organizer region - a dose-dependent disruption of primitive streak formation; this disruption resulted in circular, arc-shaped or intermediate forms, reminiscent of those found in amphibians, fishes and reptiles. Our results reveal a crucial role of ROCK-controlled directional cell movements during rabbit primitive streak formation and highlight the possibility that temporal and spatial modulation of cell movements were instrumental for the evolution of gastrulation forms.
Asunto(s)
Movimiento Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Línea Primitiva/citología , Línea Primitiva/embriología , Quinasas Asociadas a rho/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Evolución Biológica , Tipificación del Cuerpo/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Movimiento Celular/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Gastrulación/efectos de los fármacos , Organizadores Embrionarios/citología , Organizadores Embrionarios/efectos de los fármacos , Línea Primitiva/efectos de los fármacos , Línea Primitiva/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Tiazolidinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidoresRESUMEN
Directed differentiation of human pluripotent stem cells (hPSCs) can provide us any required tissue/cell types by recapitulating the development in vitro. The kidney is one of the most challenging organs to generate from hPSCs as the kidney progenitors are composed of at least 4 different cell types, including nephron, collecting duct, endothelial and interstitium progenitors, that are developmentally distinguished populations. Although the actual developmental process of the kidney during human embryogenesis has not been clarified yet, studies using model animals accumulated knowledge about the origins of kidney progenitors. The implications of these findings for the directed differentiation of hPSCs into the kidney include the mechanism of the intermediate mesoderm specification and its patterning along with anteroposterior axis. Using this knowledge, we previously reported successful generation of hPSCs-derived kidney organoids that contained all renal components and modelled human kidney development in vitro. In this review, we explain the developmental basis of the strategy behind this differentiation protocol and compare strategies of studies that also recently reported the induction of kidney cells from hPSCs. We also discuss the characterization of such kidney organoids and limitations and future applications of this technology.
Asunto(s)
Riñón/embriología , Organoides/embriología , Células Madre Pluripotentes/citología , Diferenciación Celular , Humanos , Riñón/citología , Riñón/fisiología , Mesodermo/citología , Mesodermo/embriología , Modelos Biológicos , Técnicas de Cultivo de Órganos/métodos , Técnicas de Cultivo de Órganos/tendencias , Organogénesis , Organoides/citología , Organoides/fisiología , Línea Primitiva/citología , Línea Primitiva/embriologíaRESUMEN
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Asunto(s)
Estratos Germinativos/citología , Línea Primitiva/citología , Vía de Señalización Wnt , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Gástrula/citología , Gástrula/embriología , Gástrula/metabolismo , Gastrulación/fisiología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Ratones , Ratones Transgénicos , Placa Neural/citología , Placa Neural/embriología , Placa Neural/metabolismo , Células Madre Pluripotentes/clasificación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/embriologíaAsunto(s)
Investigaciones con Embriones/ética , Investigaciones con Embriones/legislación & jurisprudencia , Desarrollo Embrionario , Femenino , Humanos , Cooperación Internacional , Masculino , Principios Morales , Línea Primitiva/embriología , Técnicas Reproductivas Asistidas/ética , Técnicas Reproductivas Asistidas/legislación & jurisprudencia , Investigación con Células Madre/ética , Investigación con Células Madre/legislación & jurisprudencia , Factores de TiempoRESUMEN
The establishment of the head to tail axis at early stages of development is a fundamental aspect of vertebrate embryogenesis. In mice, experimental embryology, genetics and expression studies have suggested that the visceral endoderm, an extra-embryonic tissue, plays an important role in anteroposterior axial development. Here we show that absence of Wnt3 in the posterior visceral endoderm leads to delayed formation of the primitive streak and that interplay between anterior and posterior visceral endoderm restricts the position of the primitive streak. Embryos lacking Wnt3 in the visceral endoderm, however, appear normal by E9.5. Our results suggest a model for axial development in which multiple signals are required for anteroposterior axial development in mammals.
Asunto(s)
Tipificación del Cuerpo/genética , Endodermo/embriología , Línea Primitiva/embriología , Proteína Wnt3/genética , Animales , Endodermo/citología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteína Wnt3/metabolismoRESUMEN
Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained from this study will also guide future investigations to decipher the role of non-canonical Wnt/PCP signaling in endoderm development, vasculogenesis and heart formation.