Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
2.
Bioorg Chem ; 145: 107165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367427

RESUMEN

Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.


Asunto(s)
Nanopartículas , Enfermedad del Hígado Graso no Alcohólico , Selenio , Humanos , Selenio/farmacología , Selenio/química , Lactobacillus acidophilus/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lípidos
3.
Exp Parasitol ; 258: 108720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367945

RESUMEN

Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.


Asunto(s)
Probióticos , Toxocara canis , Toxocariasis , Animales , Humanos , Lactobacillus acidophilus/metabolismo , Peróxido de Hidrógeno/farmacología , Toxocariasis/parasitología , Larva , Acetatos/metabolismo , Acetatos/farmacología
4.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126115

RESUMEN

An important risk factor for cardiovascular disease is dyslipidemia, especially abnormal cholesterol levels. The relation between probiotics and cholesterol-lowering capability has been extensively studied. Lactobacillus acidophilus plays a significant role in affecting host health, and produces multitudinous metabolites, which have prohibitory functions against pathogenic microorganisms. In this study, we identified a cholesterol-lowering strain AM13-1, isolated from a fecal sample obtained from a healthy adult male, and performed comprehensive function analysis by whole-genome analysis and in vitro experiments. Genome analyses of L. acidophilus AM13-1 revealed that carbohydrate and amino acid transport, metabolism, translation, ribosomal structure, and biogenesis are abundant categories of functional genes. No virulence factors or toxin genes with experimentally verified were found in the genome of strain AM13-1. Besides, plenty of probiotic-related genes were predicted from the L. acidophilus AM13-1 genome, such as cbh, atpA-D, and dltD, with functions related to cholesterol-lowering and acid resistance. And strain AM13-1 showed high-efficiency of bile salt hydrolase activity and the capacity for removing cholesterol with efficiency rates of 70%. These function properties indicate that strain AM13-1 can be considered as a probiotic candidate for use in food and health care products.


Asunto(s)
Lactobacillus acidophilus , Probióticos , Humanos , Masculino , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Probióticos/metabolismo , Colesterol/metabolismo , Heces
5.
Food Microbiol ; 122: 104565, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839213

RESUMEN

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Asunto(s)
Ácido Acético , Diospyros , Fermentación , Microbiota , Ácido Acético/metabolismo , Diospyros/microbiología , Diospyros/metabolismo , Saccharomycetales/metabolismo , Gusto , Aromatizantes/metabolismo , Lactobacillus plantarum/metabolismo , Microbiología de Alimentos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
6.
Prep Biochem Biotechnol ; 54(4): 535-544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37671992

RESUMEN

This study investigated the impact of initial culture media pH on the antibacterial properties and metabolic profile of cell-free supernatants (CFSs) from Lactobacillus acidophilus BIOTECH 1900 (LAB1900). The CFSs harvested from LAB1900 grown in de Man, Rogosa, Sharpe broth with initial pH of 5.5 (CFS5.5) and 6.6 (CFS6.6) were tested. The two CFSs elicited varying degrees of activity against three gram-negative bacteria. In the agar-well diffusion against Pseudomonas aeruginosa, CFS5.5 and CFS6.6 recorded 14.36 ± 1.34 and 13.06 ± 1.29 mm inhibition, respectively. Interestingly, against Klebsiella pneumoniae, CFS5.5 showed 14.36 ± 1.56 mm inhibition which was significantly higher than the 12.22 ± 1.31 mm inhibition of CFS6.6 (p = 0.0464). While against Acinetobacter baumannii, significantly higher inhibition of 10.66 ± 0.51 mm was observed in CFS6.6 compared to the 7.58 ± 1.93 mm inhibition of CFS5.5 (p = 0.0087). Nonetheless, both CFSs were bactericidal, with a minimum inhibitory and bactericidal concentration range of 3.90625-7.8125 mg/mL. The varied antibacterial activities may be attributed to the metabolite compositions of CFSs. A total of 152 metabolites driving the separation between CFSs were noted, with the majority upregulated in CFS5.5. Furthermore, 15 were putatively identified belonging to acylcarnities, vitamins, gibberellins, glycerophospholipids, and peptides. In summary, initial culture media pH affects the production of microbial metabolites with antibacterial properties.


Asunto(s)
Antibacterianos , Lactobacillus acidophilus , Humanos , Lactobacillus acidophilus/metabolismo , Medios de Cultivo/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Concentración de Iones de Hidrógeno , Biotecnología
7.
J Sci Food Agric ; 104(10): 5982-5990, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38427028

RESUMEN

BACKGROUND: One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS: The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION: Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.


Asunto(s)
Lactobacillus acidophilus , Probióticos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Nutrientes/metabolismo , Fermentación
8.
Am J Physiol Endocrinol Metab ; 325(3): E214-E226, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467022

RESUMEN

Gastrointestinal (GI) complications, including diarrhea, constipation, and gastroparesis, are common in patients with diabetes. Dysregulation of the Na+/H+ exchanger NHE3 in the intestine is linked to diarrhea and constipation, and recent studies showed that NHE3 expression is reduced in type 1 diabetes and metformin causes diarrhea in the db/db mouse model of type 2 diabetes (T2D) via inhibition of NHE3. In this study, we investigated whether NHE3 expression is altered in type 2 diabetic intestine and the underlying mechanism that dysregulates NHE3. NHE3 expression in the brush border membrane (BBM) of the intestine of diabetic mice and humans was decreased. Protein kinase C (PKC) activation is associated with pathologies of diabetes, and immunofluorescence (IF) analysis revealed increased BBM PKCα abundance. Inhibition of PKCα increased NHE3 BBM abundance and NHE3-mediated intestinal fluid absorption in db/db mice. Previous studies have shown that Lactobacillus acidophilus (LA) stimulates intestinal ion transporters. LA increased NHE3 BBM expression and mitigated metformin-mediated inhibition of NHE3 in vitro and in vivo. To understand the underlying mechanism of LA-mediated stimulation of NHE3, we used Caco-2bbe cells overexpressing PKCα that mimic the elevated state of PKCα in T2D. LA diminished PKCα BBM expression, increased phosphorylation of ezrin, and the interaction of NHE3 with NHE regulatory factor 2 (NHERF2). In addition, inhibition of PKCι blocked phosphorylation of ezrin and activation of NHE3 by LA. These findings demonstrate that NHE3 is downregulated in T2D, and LA restores NHE3 expression via regulation of PKCα, PKCι, and ezrin.NEW & NOTEWORTHY We used mouse models of type 2 diabetes (T2D) and human patient-derived samples to show that Na+/H+ exchanger 3 (NHE3) expression is decreased in T2D. We show that protein kinase C-α (PKCα) is activated in diabetes and inhibition of PKCα increased NHE3 expression and mitigates diarrhea. We show that Lactobacillus acidophilus (LA) stimulates NHE3 via inhibition of PKCα and phosphorylation of ezrin.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Animales , Humanos , Ratones , Estreñimiento , Diarrea/metabolismo , Lactobacillus acidophilus/metabolismo , Metformina/farmacología , Proteína Quinasa C-alfa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo
9.
RNA ; 27(1): 99-105, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087526

RESUMEN

A bacterial noncoding RNA motif almost exclusively associated with pnuC genes was uncovered using comparative sequence analysis. Some PnuC proteins are known to transport nicotinamide riboside (NR), which is a component of the ubiquitous and abundant enzyme cofactor nicotinamide adenine dinucleotide (NAD+). Thus, we speculated that the newly found "pnuC motif" RNAs might function as aptamers for a novel class of NAD+-sensing riboswitches. RNA constructs that encompass the conserved nucleotides and secondary structure features that define the motif indeed selectively bind NAD+, nicotinamide mononucleotide (NMN), and NR. Mutations that disrupt strictly conserved nucleotides of the aptamer also disrupt ligand binding. These bioinformatic and biochemical findings indicate that pnuC motif RNAs are likely members of a second riboswitch class that regulates gene expression in response to NAD+ binding.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Coenzimas/química , NAD/química , Niacinamida/análogos & derivados , Compuestos de Piridinio/química , Riboswitch , Streptococcus/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Coenzimas/metabolismo , Biología Computacional/métodos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , NAD/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Compuestos de Piridinio/metabolismo , Shewanella/genética , Shewanella/metabolismo , Streptococcus/metabolismo
10.
J Nutr ; 153(8): 2512-2522, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356501

RESUMEN

BACKGROUND: Limosilactobacillusmucosae (LM) exerts anti-inflammatory and health-promoting effects. However, its role in the modulation of gut serotonin or 5-hydroxytryptamine (5-HT) metabolism and 5-HT receptors (HTRs) in inflammation requires further investigation. OBJECTIVES: We compared LM with Lactobacillus amylovorus (LA) for the regulation of 5-HT, HTRs, inflammatory mediators, and their correlations in the colon of mice with experimental colitis. METHODS: Male C57BL/6 mice were randomly assigned to 6 groups: control (Con), LM, LA, dextran sodium sulfate (DSS), and DSS with pre-administration of LM (+LM) or LA (+LA). After 7 d of DSS treatment, mice were killed to analyze the expression of inflammatory mediators, HTRs, and concentrations of 5-HT and microbial metabolites in the colon. RESULTS: LM was more effective than LA in alleviating DSS-induced colonic inflammation. Compared with mice in the DSS group, mice receiving DSS + LM or DSS + LA treatment had lower (P < 0.05) colonic mRNA expression of proinflammatory cytokines. DSS + LM treatment had lower mRNA expression of Il1b, Tnfa, and Ccl3, an abundance of p-STAT3, and greater expression of Tgfb2 and Htr4 in the colon (P < 0.05). The expression of inflammatory mediators (including Tgfb-1) was positively correlated (P < 0.05) with 5-HT and Htr2a and negatively correlated (P < 0.05) with Htr4. However, the expression of Tgfb-2 showed reversed correlations with the 5-HT and HTRs described above. Patterns for these correlations were different for LM and LA. Mice receiving the DSS + LM treatment had greater (P < 0.05) concentrations of acetate and valerate and lower (P < 0.05) concentrations of indole-3-acetic acid in the cecal and colonic contents. CONCLUSIONS: LM showed greater efficacy than LA in alleviating DSS-induced colonic inflammation. The coordinated regulation of transforming growth factor-ß subtypes and serotonin receptors in the colon may be one of the most important mechanisms underlying the probiotic effects of lactobacilli in gut inflammation.


Asunto(s)
Colitis , Serotonina , Masculino , Animales , Ratones , Serotonina/metabolismo , Lactobacillus acidophilus/metabolismo , Regulación hacia Arriba , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/metabolismo , Colon/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Factores de Crecimiento Transformadores/efectos adversos , Factores de Crecimiento Transformadores/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
11.
Pediatr Res ; 94(1): 103-111, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476746

RESUMEN

BACKGROUND: Probiotics have a protective effect on various diseases. In neonatology, they are predominantly used to prevent necrotising enterocolitis (NEC), a severe inflammatory disease of the neonatal intestine. The mechanisms by which probiotics act are diverse; little is known about their direct effect on neonatal immune cells. METHODS: In this study, we investigated the effect of probiotics on the functions of neonatal monocytes in an in vitro model using three different strains (Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA) and Bifidobacterium bifidum (BB)) and mononuclear cells isolated from cord blood. RESULTS: We show that stimulation with LR induces proinflammatory effects in neonatal monocytes, such as increased expression of surface molecules involved in monocyte activation, increased production of pro-inflammatory and regulatory cytokines and increased production of reactive oxygen species (ROS). Similar effects were observed when monocytes were stimulated simultaneously with LPS. Stimulation with LA and BB alone or in combination also induced cytokine production in monocytes, with BB showing the least effects. CONCLUSIONS: Our results suggest that probiotics increase the defence functions of neonatal monocytes and thus possibly favourably influence the newborn's ability to fight infections. IMPACT: Probiotics induce a proinflammatory response in neonatal monocytes in vitro. This is a previously unknown mechanism of how probiotics modulate the immune response of newborns. Probiotic application to neonates may increase their ability to fight off infections.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos , Humanos , Recién Nacido , Monocitos , Sangre Fetal/metabolismo , Citocinas/metabolismo , Lactobacillus acidophilus/metabolismo
12.
Microb Cell Fact ; 22(1): 148, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559084

RESUMEN

Colorectal cancer (CRC) is the third cause of death by cancers worldwide and is one of the most common cancer types reported in both Egypt and the United States. The use of probiotics as a dietary therapy is increasing either as a prevention or as a treatment for many diseases, particularly, in the case of CRC. The increasing acceptance of lactic acid bacterial (LAB) oligosaccharides as bioactive agents has led to an increase in the demand for the large-scale production of LAB-oligosaccharides using fermentation technology. Therefore, in the current study, we are using the Plackett- Burman design (PBD) approach, where sixteen experimental trials were applied to optimize the production of the target oligosaccharide LA-EPS-20079 from Lactobacillus acidophilus. Glucose, yeast extract and sodium acetate trihydrate were the top three significant variables influencing LA-EPS production. The maximum concentration of LA-EPS-20079 achieved by L. acidophilus was 526.79 µg/ml. Furthermore, Box-Behnken design (BBD) as response surface methodology (RSM) was used to complete the optimization procedure. The optimal levels of the chosen variables which were 30.0 g/l, glucose; 5 g/l, yeast extract and 10.0 g/l sodium acetate trihydrate with the predicted LA-EPS-20079 concentration of 794.82 µg/ml. Model validity reached 99.93% when the results were verified. Both optimized trials showed great cytotoxic effects against colon cancer line (CaCo-2) with inhibition percentages ranging from 64.6 to 81.9%. Moreover, downregulation in the expression level of BCL2 and Survivin genes was found with a fold change of 3.377 and 21.38, respectively. Finally, we concluded that the optimized LA-EPS-20079 has maintained its anticancer effect against the CaCo-2 cell line that was previously reported by our research group.


Asunto(s)
Neoplasias del Colon , Probióticos , Humanos , Lactobacillus acidophilus/metabolismo , Proyectos de Investigación , Células CACO-2 , Acetato de Sodio/metabolismo , Fermentación , Neoplasias del Colon/tratamiento farmacológico , Glucosa/metabolismo
13.
Prostaglandins Other Lipid Mediat ; 165: 106716, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764153

RESUMEN

AIM: The investigation of serum leptin, ghrelin, insulin, seratonin hormones, NO, total oxidant/antioxidant status and brain cannaboid 1 receptor protein and apoptotic cell levels in atorvastatin and Lactobacillus acidophilus administrated experimental hypercholesterolemia was aimed in the project. METHODS: In the study, 5 experimental groups were formed. Group 1 was fed with standard rat chow, and Group 2 was fed with 2% cholesterol added standard rat chow for 8 weeks. Group 3 was fed with 2% cholesterol feed and received atorvastatin (20 mg/kg/day) for the last 4 weeks. Group 4 was given L. acidophilus (2 ×108 cfu/kg/day). Group 5 was given atorvastatin and L. acidophilus probiotic in the last 4 weeks of the experiment period. After the experimental period, blood samples were taken from each rat. Rats were sacrificed and brain tissues were taken for analyzes. In sera samples, leptin, ghrelin, insulin, serotonin hormones and NO levels were measured with ELISA. In brain samples, cannabinoid 1 receptor proteins and apoptosis levels were measured by ELISA. Total oxidant and antioxidant levels were investigated with using Rel Assay Kits. RESULTS: The addition of cholesterol to feeds increased the levels of serum cholesterol, insulin and leptin levels; on the other hand, reduced the levels of serotonin and ghrelin. In hypercholesterolemia, total oxidant and NO levels were increased, and total antioxidant levels were decreased. CONCLUSION: The results showed that administrations of L. acidophilus and atorvastatin might be recommended for treatment of hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Insulinas , Probióticos , Ratas , Animales , Hipercolesterolemia/tratamiento farmacológico , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Atorvastatina/metabolismo , Lactobacillus acidophilus/metabolismo , Leptina/metabolismo , Ghrelina/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Serotonina/metabolismo , Colesterol/metabolismo , Probióticos/farmacología , Estrés Oxidativo , Insulinas/metabolismo
14.
Appl Microbiol Biotechnol ; 106(7): 2481-2491, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35344091

RESUMEN

Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L. acidophilus ATCC4356 were also detected. UGPase-0625 and UGPase-1719 belong to the nucleotidyltransferase of stable hydrophilic proteins; contain 300 and 294 amino acids, respectively; and have 20 conserved active sites by prediction. Αlpha-helixes and random coils were the main secondary structures, which constituted the main skeleton of UGPases. The optimal mixture for the high catalytic activity of the two UGPases included 0.5 mM UDP-Glu (uridine diphosphate glucose) and Mg2+ at 37 °C, pH 10.0. By comparing the UGPase activities of the mutant strains with the original recombinant strains, A10, L130, and L263 were determined as the active sites of UGPase-0625 (P < 0.01) and A11, L130, and L263 were determined as the active sites of UGPase-1719 (P < 0.01). In addition, UGPase overexpression could increase the production of polysaccharides and the survival rates of recombinant bacteria after freeze-drying. This is the first study to determine the enzymatic properties, active sites, and structural simulation of UGPases from L. acidophilus, providing in-depth understanding of the biological characteristics of UGPases in lactic acid bacteria.Key points• We detected the biological characteristics of UGPases encoded by LBA0625 and LBA1719.• We identified UGPase-0625 and UGPase-1719 active sites.• UGPase overexpression elevates polysaccharide levels and post-freeze-drying survival.


Asunto(s)
Lactobacillus acidophilus , UTP-Glucosa-1-Fosfato Uridililtransferasa , Dominio Catalítico , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Estructura Secundaria de Proteína , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/metabolismo
15.
Lett Appl Microbiol ; 75(2): 249-260, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429170

RESUMEN

This study evaluated the effects of a fibre and phenolic-rich flour (IGF) prepared from Isabel grape by-products on the growth and metabolism of different probiotics and distinct bacterial populations part of the human intestinal microbiota during an in vitro colonic fermentation. IGF was submitted to simulated gastrointestinal digestion before use in the experiments. IGF favoured the growth of the probiotics Lactobacillus acidophilus La-05, L. casei L-26 and Bifidobacterium lactis Bb-12, with viable counts of >7 log CFU per ml, as well as caused decreases in pH values and increases in organic acid production in the growth medium during 48 h of cultivation. IGF increased the population of beneficial micro-organisms forming the human intestinal microbiota, particularly Lactobacillus spp., decreased the pH values, and increased the lactic acid and short-chain fatty acid (acetic, butyric and propionic acids) production during 24 h of in vitro colonic fermentation. These results indicate the potential prebiotic effects of IGF, which should represent a novel sustainable added-value ingredient with functional properties and gut-health benefits.


Asunto(s)
Microbiota , Probióticos , Vitis , Fermentación , Harina , Humanos , Lactobacillus acidophilus/metabolismo , Fenoles/análisis , Fenoles/farmacología , Probióticos/metabolismo , Probióticos/farmacología
16.
An Acad Bras Cienc ; 94(3): e20210875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35195165

RESUMEN

In this study, monocultures of L. casei, L. acidophilus, B. lactis and their combination with yogurt starter culture were used with goat yogurt. Yogurts containing only probiotic bacteria were observed for 12 hours of fermentation, and yogurts containing both probiotic bacteria and yogurt bacteria were followed for 8 hours of fermentation. The use of yogurt culture increased the lactic acid contents, hardness values and antioxidant activities - using ABTS (2,2-azino-di-(3-ethylbenzothialozine sulfonic acid) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) methods - and exhibited a shortened fermentation time. DPPH radical scavenging activity of all probiotic yogurt samples without yogurt culture decreased significantly at the end of fermentation (after 8 hours) compared to the beginning of fermentation (p<0.05). Across all the samples, L. acidophilus and B. lactis-containing yogurts exhibited the maximum viability at the end of fermentation. L. casei could not maintain viability at the end of the 8 hour fermentation. A high positive correlation was determined between antioxidant activity (ABTS) and the free amino acid results of probiotic yogurts containing yogurt culture. In this study, it was concluded that antioxidant activity, probiotic viability and amino acid content of probiotic goat yogurts changed with fermentation time.


Asunto(s)
Probióticos , Yogur , Animales , Antioxidantes/metabolismo , Fermentación , Cabras , Lactobacillus acidophilus/metabolismo , Probióticos/química
17.
Microb Cell Fact ; 20(1): 152, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344368

RESUMEN

BACKGROUND: Feruloyl esterase is a multifunctional esterase with potential industrial applications. In the present study, we found the Lactobacillus amylovorus feruloyl esterase (FaeLam) could be secreted by L. plantarum and Escherichia coli. However, no signal peptide was detected in this protein as predicted by SignalP-5.0. Therefore, experiments were carried out to propose an explanation for the extracellular release of FaeLam. RESULTS: Here, we identified that the FaeLam could be secreted to the culture medium of L. plantarum CGMCC6888 and E. coli DH5α, respectively. To exclude the possibility that FaeLam secretion was caused by its hydrolytic activity on the cell membrane, the inactive FaeLamS106A was constructed and it could still be secreted out of L. plantarum and E. coli cells. Furthermore, the truncated version of the FaeLam without the N-terminal residues was constructed and demonstrated the importance of the 20 amino acids of N-terminus (N20) on FaeLam secretion. In addition, fusion of heterologous proteins with N20 or FaeLam could carry the target protein out of the cells. These results indicated the N-terminus of FaeLam played the key role in the export process. CONCLUSIONS: We proved the N-terminus of L. amylovorus FaeLam plays an important role in its secretion by L. plantarum and E. coli. To our best knowledge, this is the first reported protein which can be secreted out of the cells of both Gram-positive and Gram-negative bacteria. Furthermore, the results of this study may provide a new method for protein secretion in L. plantarum and E. coli through fusion the target protein to N20 of FaeLam.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Escherichia coli/metabolismo , Lactobacillus acidophilus/enzimología , Lactobacillus plantarum/metabolismo , Hidrolasas de Éster Carboxílico/genética , Medios de Cultivo/química , Escherichia coli/genética , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Lactobacillus plantarum/genética
18.
Int J Med Sci ; 18(12): 2666-2672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34104099

RESUMEN

Bacterial biofilm (dental plaque) plays a key role in caries etiopathogenesis and chronic periodontitis in humans. Dental plaque formation is determined by exopolysaccharides (EPSs) produced by cariogenic and periopathogenic bacteria. The most frequent cariogenic bacteria include oral streptococci (in particular S. mutans) and lactobacilli (most frequently L. acidophilus). In turn, the dominant periopathogen in periodontitis is Porphyromonas gingivalis. Development of dental caries is often accompanied with gingivitis constituting the mildest form of periodontal disease. Basic cellular components of the gingiva tissue are fibroblasts the damage of which determines the progression of chronic periodontitis. Due to insufficient knowledge of the direct effect of dental plaque on metabolic activity of the fibroblasts, this work analyses the effect of EPSs produced by S. mutans and L. acidophilus strains (H2O2-producing and H2O2-not producing) on ATP levels in human gingival fibroblasts (HGF-1) and their viability. EPSs produced in 48-hours bacterial cultures were isolated by precipitation method and quantitatively determined by phenol - sulphuric acid assay. ATP levels in HGF-1 were evaluated using a luminescence test, and cell viability was estimated using fluorescence test. The tests have proven that EPS from S. mutans did not affect the levels of ATP in HGF-1. Whereas EPS derived from L. acidophilus strains, irrespective of the tested strain, significantly increased ATP levels in HGF-1. The analysed EPSs did not affect the viability of cells. The tests presented in this work show that EPSs from cariogenic bacteria have no cytotoxic effect on HGF-1. At the same time, the results provide new data indicating that EPSs from selected oral lactobacilli may have stimulating effect on the synthesis of ATP in gingival fibroblasts which increases their energetic potential and takes a protective effect.


Asunto(s)
Adenosina Trifosfato/metabolismo , Caries Dental/microbiología , Fibroblastos/inmunología , Gingivitis/inmunología , Polisacáridos Bacterianos/inmunología , Adenosina Trifosfato/análisis , Biopelículas , Línea Celular , Caries Dental/inmunología , Fibroblastos/metabolismo , Encía/citología , Encía/inmunología , Encía/microbiología , Gingivitis/microbiología , Humanos , Lactobacillus acidophilus/inmunología , Lactobacillus acidophilus/metabolismo , Polisacáridos Bacterianos/metabolismo , Streptococcus mutans/inmunología , Streptococcus mutans/metabolismo
19.
J Dairy Sci ; 104(1): 138-150, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33131816

RESUMEN

Lactobacillus acidophilus LA-5 is a suitable probiotic for food application, but because of its slow growth in milk, an increase in its efficiency is desired. To shorten the time required for fermentation, the nutrient requirements of L. acidophilus LA-5 were analyzed, including the patterns of consumption of amino acids, purines, pyrimidines, vitamins, and metal ions. The nutrients required by L. acidophilus LA-5 were Asn, Asp, Cys, Leu, Met, riboflavin, guanine, uracil, and Mn2+, and when they were added to milk, the fermentation time of fermented milk prepared by L. acidophilus LA-5 alone was shortened by 9 h, with high viable cell counts that were maintained during storage of nutrient-supplemented fermented milk compared with the control. For fermented milk prepared by fermentation with Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, and L. acidophilus LA-5, viable cell counts of L. acidophilus LA-5 increased 1.3-fold and were maintained during storage of nutrient-supplemented fermented milk compared with the control. Adding nutrients had no negative effect on the quality of the fermented milk. The results indicated that suitable nutrients enhanced the growth of L. acidophilus LA-5 and increased its viable cell counts in fermented milk prepared by L. acidophilus LA-5 alone and mixed starter culture, respectively.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Leche/metabolismo , Animales , Reactores Biológicos , Fermentación , Lactobacillus acidophilus/metabolismo , Leche/química , Nutrientes , Probióticos , Streptococcus thermophilus/metabolismo
20.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728264

RESUMEN

Lactobacillus bacteria are potential delivery vehicles for biopharmaceutical molecules because they are well-recognized as safe microorganisms that naturally inhabit the human body. The goal of this study was to employ these lactobacilli to combat human immunodeficiency virus type 1 (HIV-1) infection and transmission. By using a chromosomal integration method, we engineered Lactobacillus acidophilus ATCC 4356 to display human CD4, the HIV-1 receptor, on the cell surface. Since human CD4 can bind to any infectious HIV-1 particles, the engineered lactobacilli can potentially capture HIV-1 of different subtypes and prevent infection. Our data demonstrate that the CD4-carrying bacteria are able to adsorb HIV-1 particles and reduce infection significantly in vitro and also block intrarectal HIV-1 infection in a humanized mouse model in preliminary tests in vivo Our results support the potential of this approach to decrease the efficiency of HIV-1 sexual transmission.IMPORTANCE In the absence of an effective vaccine, alternative approaches to block HIV-1 infection and transmission with commensal bacteria expressing antiviral proteins are being considered. This report provides a proof-of-concept by using Lactobacillus bacteria stably expressing the HIV-1 receptor CD4 to capture and neutralize HIV-1 in vitro and in a humanized mouse model. The stable expression of antiviral proteins, such as CD4, following genomic integration of the corresponding genes into this Lactobacillus strain may contribute to the prevention of HIV-1 sexual transmission.


Asunto(s)
Antígenos CD4/metabolismo , Infecciones por VIH/prevención & control , VIH-1/metabolismo , Lactobacillus acidophilus/metabolismo , Animales , Antígenos CD4/genética , Línea Celular , Femenino , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Lactobacillus acidophilus/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA