Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Neurol ; 37(5): 509-514, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989655

RESUMEN

PURPOSE OF REVIEW: To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS: Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY: Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.


Asunto(s)
Lamina Tipo A , Laminopatías , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Animales , Mutación , Músculo Estriado/patología , Músculo Estriado/metabolismo
2.
Pediatr Res ; 95(5): 1356-1362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191824

RESUMEN

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. This study aims to investigate the epidemiological and genotypic characteristics of patients with HGPS/PL in China. METHODS: Using a cross-sectional study design, general characteristics and genotypic data of 46 patients with HGPS/PL from 17 provinces in China were analyzed. RESULTS: Among the 46 patients with HGPS/PL, 20 patients are HGPS, and the rest are PL; the identified total prevalence of HGPS/PL is 1/23 million. Among 42 patients with gene reports, 3 carried compound heterozygous mutations in the ZMPSTE24 while the other 39 carried LMNA mutations. Among PL, LMNA c.1579 C > T homozygous mutation was the most common. The onset of classic genotype HGPS is skin sclerosis in the first month after birth. The primary clinical manifestations of PL patients include skin abnormalities, growth retardation, and joint stiffness. The median age of onset for PL was 12 (6,12) months. CONCLUSIONS: In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL were located in LMNA, and the rest in ZMPSTE24. Most patients of HGPS/PL have skin abnormalities as the earliest manifestation. Compared to PL, the classic genotype HGPS starts earlier. IMPACT STATEMENT: Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. To date, there is a paucity of epidemiological data related to HGPS/PL in China. This study first examined the genotypic, phenotypic, and prevalence characteristics of 40-50% of the cases of HGPS/PL in mainland China through a collaborative international registry effort. In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL are located in LMNA. LMNA c.1579 C > T homozygous mutations are the most common form of gene mutations among the Chinese PL population.


Asunto(s)
Lamina Tipo A , Proteínas de la Membrana , Mutación , Progeria , Humanos , Progeria/genética , Progeria/epidemiología , China/epidemiología , Masculino , Femenino , Lamina Tipo A/genética , Estudios Transversales , Preescolar , Lactante , Prevalencia , Niño , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Genotipo , Adolescente , Laminopatías/genética , Laminopatías/epidemiología , Fenotipo
3.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273270

RESUMEN

Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.


Asunto(s)
Lamina Tipo A , Laminopatías , Lipodistrofia , Progeria , Humanos , Progeria/genética , Progeria/patología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/patología , Laminopatías/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Fenotipo , Mutación
4.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125589

RESUMEN

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Asunto(s)
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animales , Laminopatías/genética , Laminopatías/metabolismo , Progeria/genética , Progeria/metabolismo , Progeria/patología , Mutación , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo de los Lípidos/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Resistencia a la Insulina/genética , Edición Génica
5.
Annu Rev Genomics Hum Genet ; 21: 263-288, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32428417

RESUMEN

In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.


Asunto(s)
Núcleo Celular/genética , Cromatina/química , Cromatina/genética , Laminopatías/patología , Animales , Humanos , Laminopatías/genética
6.
Brain ; 144(10): 3020-3035, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33964137

RESUMEN

Leukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report these two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the underlying cause of this novel form of leukodystrophy with ataxia and sensorineural deafness that includes fibrotic cardiomyopathy and hepatopathy as associated features in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as the RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology; mutations in primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.


Asunto(s)
Alelos , Ataxia/genética , Sordera/genética , Laminopatías/genética , Mutación/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Secuencia de Aminoácidos , Animales , Ataxia/diagnóstico , Células COS , Niño , Chlorocebus aethiops , Sordera/diagnóstico , Drosophila , Femenino , Células HEK293 , Humanos , Laminopatías/diagnóstico , Masculino , Linaje , Adulto Joven
7.
J Med Genet ; 58(5): 326-333, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32571898

RESUMEN

BACKGROUND: LMNA-related muscular dystrophy is caused by mutations in LMNA gene. We aimed to identify genetic variations and clinical features in a large cohort of Chinese patients with LMNA mutations in an attempt to establish genotype-phenotype correlation. METHODS: The clinical presentations of patients with LMNA-related muscular dystrophy were recorded using retrospective and prospective cohort study. LMNA mutation analysis was performed by Sanger sequencing or next-generation sequencing. Mosaicism was detected by personal genome machine amplicon deep sequencing for mosaicism. RESULTS: Eighty-four patients were identified to harbour LMNA mutations. Forty-one of those were diagnosed with LMNA-related congenital muscular dystrophy (L-CMD), 32 with Emery-Dreifuss muscular dystrophy (EDMD) and 11 with limb-girdle muscular dystrophy type 1B (LGMD1B). We identified 21 novel and 29 known LMNA mutations. Two frequent mutations were identified: c.745C>T and c.1357C>T. A correlation between the location of mutation and the clinical phenotype was observed: mutations affecting the head and coil 2A domains mainly occurred in L-CMD, while the coil 2B and Ig-like domains mainly related to EDMD and LGMD1B. We found somatic mosaicism in one parent of four probands. Muscle biopsies revealed 11 of 20 biopsied L-CMD exhibited inflammatory changes, and muscle cell ultrastructure showed abnormal nuclear morphology. CONCLUSIONS: Our detailed clinical and genetic analysis of 84 patients with LMNA-related muscular dystrophy expands clinical spectrum and broadens genetic variations caused by LMNA mutations. We identified 21 novel and 29 known LMNA mutations and found two frequent mutations. A correlation between the location of mutation and the clinical severity was observed. Preliminary data suggested that low-dose corticosteroid treatment may be effective.


Asunto(s)
Lamina Tipo A/genética , Laminopatías/genética , Distrofias Musculares/genética , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Pueblo Asiatico , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Laminopatías/tratamiento farmacológico , Laminopatías/patología , Masculino , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/patología , Adulto Joven
8.
FASEB J ; 34(7): 9051-9073, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413188

RESUMEN

Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue-specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post-translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant-driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild-type and mutant LMNA. Our findings indicate phenotype- and mutant-specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant- and kinase-specific approaches.


Asunto(s)
Estudios de Asociación Genética , Genotipo , Lamina Tipo A/genética , Laminopatías/patología , Mutación , Fenotipo , Femenino , Humanos , Lamina Tipo A/metabolismo , Laminopatías/clasificación , Laminopatías/genética , Laminopatías/metabolismo , Masculino , Fosforilación
9.
J Clin Lab Anal ; 35(4): e23736, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33626194

RESUMEN

BACKGROUND: Laminopathies caused by LMNA gene mutations are characterized by different clinical manifestations. Among them, cardiac involvement is one of the most severe phenotypes. CASE PRESENTATION: A 30-year-old man visited the hospital because of palpitations, shortness of breath, and fatigue. He also had muscular dystrophy, joint contractures, scoliosis, and mild dysphagia. A novel de novo heterozygous LMNA splice variant (c.810+1G>T) with dilated cardiomyopathy, Emery-Dreifuss muscular dystrophy, and progressive cardiac conduction defect was identified by genetic analysis. The patient also presented with congenital aortic valve malformation, which has never been reported in laminopathies. CONCLUSIONS: The LMNA mutation (c.810+1G>T) was identified for the first time, enriching the mutation spectrum of the LMNA gene. The correlation between an LMNA mutation and congenital aortic valve malformation deserves further study.


Asunto(s)
Válvula Aórtica/anomalías , Lamina Tipo A/genética , Laminopatías/genética , Mutación/genética , Adulto , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Secuencia de Bases , Humanos , Laminopatías/diagnóstico por imagen , Laminopatías/fisiopatología , Imagen por Resonancia Magnética , Masculino , Función Ventricular Izquierda
10.
Pediatr Dermatol ; 38(6): 1535-1540, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34647350

RESUMEN

Restrictive dermopathy (RD) is a rare and lethal laminopathy caused by mutations in LMNA or ZMPSTE24. This series reports 3 patients with RD and reviews the literature of the 113 previously reported cases, including highlights of the unique constellation of clinical findings in RD, as well as histologic, radiographic, and genetic features. Early recognition of these characteristic features is vital to establish a prompt diagnosis and provide adequate family counseling for this terminal condition.


Asunto(s)
Laminopatías , Proteínas de la Membrana , Metaloendopeptidasas , Humanos , Laminopatías/diagnóstico , Laminopatías/genética , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Mutación
11.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638534

RESUMEN

A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.


Asunto(s)
Proteínas de Filamentos Intermediarios/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Laminopatías/patología , Membrana Nuclear/metabolismo , Células 3T3 , Animales , Línea Celular , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas de Filamentos Intermediarios/genética , Lamina Tipo A/genética , Lamina Tipo B/genética , Laminopatías/genética , Ratones , Microscopía Confocal
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681887

RESUMEN

Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype-phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.


Asunto(s)
Simulación por Computador , Drosophila melanogaster/metabolismo , Lamina Tipo A/metabolismo , Laminopatías/patología , Distrofias Musculares/patología , Mutación , Sustitución de Aminoácidos , Animales , Preescolar , Drosophila melanogaster/genética , Femenino , Humanos , Lactante , Lamina Tipo A/genética , Laminopatías/genética , Laminopatías/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Fenotipo
13.
Biochem Genet ; 58(6): 966-980, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32705401

RESUMEN

LMNA-related muscular dystrophies are caused by mutations of the LMNA gene. Inflammatory changes and cellular apoptosis are significant pathological findings in the muscle cells of these patients. We aimed to investigate the roles of nuclear factor-κB (NF-κB) mediated inflammation as a molecular mechanism for the pathogenesis of LMNA-related muscular dystrophies. Muscle specimen of a patient with LMNA gene mutation (c.1117A>G, p.I373V, reported in our previous work) showed significant inflammatory changes. The ultrastructure of muscle cells showed severe nuclear abnormalities compared with the control. Therefore, we used this mutation to establish mutant cell line for in vitro studies. Transfected human embryonic kidney 293 (HEK293) cells containing a mutant construct from this patient showed irregular nuclear morphology. Mass spectrometry analysis suggested genomic instability and augmented expression of apoptosis-related genes. We detected activation of NF-κB pathway in LMNA mutant cells which promoted the expression of downstream inflammatory factors. The LMNA mutation also activated the molecular pathway of apoptosis in LMNA mutant cells. These are important molecular mechanisms underlying the pathogenesis of LMNA-related muscular dystrophies. Our research provides crucial evidence for future pathogenetic studies and possible treatment strategies for LMNA-related muscular dystrophies.


Asunto(s)
Lamina Tipo A/metabolismo , Laminopatías/metabolismo , Distrofias Musculares/metabolismo , Mutación Missense , FN-kappa B/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Células HEK293 , Humanos , Lamina Tipo A/genética , Laminopatías/genética , Laminopatías/patología , Distrofias Musculares/genética , FN-kappa B/genética
14.
Mol Med Rep ; 30(6)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39422026

RESUMEN

The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA­related diseases and additional theoretical insights for basic and clinical translational research in this field.


Asunto(s)
Lamina Tipo A , Neoplasias , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Mutación , Predisposición Genética a la Enfermedad , Transducción de Señal , Animales , Laminopatías/genética , Laminopatías/metabolismo
15.
Genes (Basel) ; 15(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39202453

RESUMEN

Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.


Asunto(s)
Laminopatías , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Laminopatías/genética , Laminopatías/patología , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Transducción de Señal/genética , Laminas/genética , Laminas/metabolismo
16.
Sci Rep ; 14(1): 12826, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834813

RESUMEN

Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify L-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest L-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.


Asunto(s)
Animales Modificados Genéticamente , Carnitina , Creatina , Lamina Tipo A , Músculo Esquelético , Mutación , Pez Cebra , Animales , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Creatina/metabolismo , Carnitina/metabolismo , Modelos Animales de Enfermedad , Laminopatías/genética , Laminopatías/metabolismo , Natación , Transcriptoma , Humanos
17.
J Alzheimers Dis ; 101(1): 211-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121120

RESUMEN

Background: Laminopathy is a pathological manifestation observed in Alzheimer's disease (AD), leading to neuronal apoptosis. Objective: Our objective was to assess inhibitors of enzymes involved in laminopathy. Methods: The mRNA expression of the cathepsins L and B, caspases 3 and 6, lamins b1 and b2, granzymes A and B, and lamins A and C were extracted and analyzed from GSE5281 and GSE28146 datasets. A total of 145 ligands were selected for molecular docking. Subsequently, 10 ns and 100 ns atomistic molecular dynamics (MD) and Martini 3 were performed with NAMD for two selected ligands (PubChem id: 608841 and ChEMBL id: 550872). Results: The mRNA expression level highlighted caspase 6 and lamin A/C upregulation in the hippocampus of the AD samples, in contrast to cathepsin B, lamin b2, and caspase 3. Moreover, there was a strong correlation between the expression level of cathepsin B, lamin A/C, and caspase 6 in the AD group. The MD results suggested molecule with ChEMBL id of 550872 had higher free binding energy, while in longer simulation the molecule with PubChem id of 608841 was suggested to be more stable in complex with the receptor. Conclusions: Our findings suggest that lamins A/C, cathepsins B/L, caspase 6, and lamin B2 are associated with laminopathy as potential factors contributing to apoptosis in AD. We propose that simultaneous inhibition of caspases 6 and cathepsins L may decrease the rate of apoptosis triggered by lamin degradation. Nevertheless, further studies are required to confirm these observations due to the lack of in vivo findings.


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Caspasa 3 , Caspasa 6 , Catepsina B , Catepsina L , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Caspasa 6/metabolismo , Caspasa 6/genética , Apoptosis/efectos de los fármacos , Catepsina L/metabolismo , Catepsina L/genética , Catepsina B/metabolismo , Catepsina B/genética , Caspasa 3/metabolismo , Laminopatías/genética , Simulación del Acoplamiento Molecular , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Masculino
18.
Eur J Hum Genet ; 31(9): 1073-1077, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36526864

RESUMEN

"Laminopathies" refers to a wide spectrum of myopathies caused by mutations in the LMNA gene. These myopathies include limb girdle muscular dystrophy type 1B (LGMD1B) and dilated cardiomyopathy 1 A (DCM1A), which are both autosomal dominant neurogenetic diseases. There have been few studies on mosaicism in laminopathies. Herein, a Han Chinese family with laminopathies was enrolled in our study. Genetic analysis revealed that the proband carried a novel splice site mutation, c. 1158-3 C > T, in the LMNA gene due to her mother having de novo somatic and gonadal mosaicism. Reverse-transcription polymerase chain reaction (RT-PCR) analysis revealed reduced levels of LMNA mRNA in the proband, which were probably due to nonsense-mediated mRNA decay (NMD). Western blotting revealed reduced lamin A/C protein levels in the skeletal muscle tissue of the proband. In this family, the clinical phenotypes of the proband's mother were normal, and the c. 1158-3 C > T splicing mutation was identified in the blood sample of the proband's mother. Thus, the mutation could be easily considered to be nonpathogenic. Our study emphasizes the importance of mosaicism in the identification of pathogenic variants and genetic counseling.


Asunto(s)
Lamina Tipo A , Laminopatías , Mosaicismo , Enfermedades Musculares , Femenino , Humanos , Pueblos del Este de Asia , Lamina Tipo A/genética , Laminopatías/sangre , Laminopatías/genética , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Enfermedades Musculares/sangre , Enfermedades Musculares/genética , Distrofia Muscular de Cinturas/genética , Laminas/análisis , Laminas/sangre
19.
Annu Rev Pathol ; 17: 159-180, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34672689

RESUMEN

The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.


Asunto(s)
Laminopatías , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Mutación , Transducción de Señal/genética
20.
Clin Epigenetics ; 13(1): 139, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246298

RESUMEN

BACKGROUND: Mutations in LMNA, encoding lamin A/C, lead to a variety of diseases known as laminopathies including dilated cardiomyopathy (DCM) and skeletal abnormalities. Though previous studies have investigated the dysregulation of gene expression in cells from patients with DCM, the role of epigenetic (gene regulatory) mechanisms, such as DNA methylation, has not been thoroughly investigated. Furthermore, the impact of family-specific LMNA mutations on DNA methylation is unknown. Here, we performed reduced representation bisulfite sequencing on ten pairs of fibroblasts and their induced pluripotent stem cell (iPSC) derivatives from two families with DCM due to distinct LMNA mutations, one of which also induces brachydactyly. RESULTS: Family-specific differentially methylated regions (DMRs) were identified by comparing the DNA methylation landscape of patient and control samples. Fibroblast DMRs were found to enrich for distal regulatory features and transcriptionally repressed chromatin and to associate with genes related to phenotypes found in tissues affected by laminopathies. These DMRs, in combination with transcriptome-wide expression data and lamina-associated domain (LAD) organization, revealed the presence of inter-family epimutation hotspots near differentially expressed genes, most of which were located outside LADs redistributed in LMNA-related DCM. Comparison of DMRs found in fibroblasts and iPSCs identified regions where epimutations were persistent across both cell types. Finally, a network of aberrantly methylated disease-associated genes revealed a potential molecular link between pathways involved in bone and heart development. CONCLUSIONS: Our results identified both shared and mutation-specific laminopathy epimutation landscapes that were consistent with lamin A/C mutation-mediated epigenetic aberrancies that arose in somatic and early developmental cell stages.


Asunto(s)
Cardiomiopatía Dilatada/complicaciones , Lamina Tipo A/análisis , Laminopatías/etiología , Cardiomiopatía Dilatada/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Humanos , Lamina Tipo A/genética , Laminopatías/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA