Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.205
Filtrar
Más filtros

Colección Odontología Uruguay
Intervalo de año de publicación
1.
Cell ; 187(15): 3919-3935.e19, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38908368

RESUMEN

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.


Asunto(s)
Envejecimiento , Caenorhabditis elegans , Redes Reguladoras de Genes , Longevidad , Transcriptoma , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Animales , Envejecimiento/genética , Transcriptoma/genética , Longevidad/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Cell ; 186(16): 3522-3522.e1, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541203

RESUMEN

Located in each brain ventricle, choroid plexus (ChP) tissue forms a blood-CSF barrier and produces cerebrospinal fluid (CSF) and other supportive factors. Sheets of ChP epithelial cells enclose a vascularized stroma of mesenchymal, immune, and neuron/glia-like cells. Burgeoning ChP studies are revealing its complex set of functions across the lifespan. To view this SnapShot, open or download the PDF.


Asunto(s)
Encéfalo , Plexo Coroideo , Barrera Hematoencefálica , Longevidad , Células Epiteliales , Líquido Cefalorraquídeo
3.
Cell ; 186(1): 8-9, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608660

RESUMEN

Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.


Asunto(s)
Longevidad , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Células Eucariotas , Citoplasma
4.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657418

RESUMEN

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Asunto(s)
Envejecimiento , Longevidad , Humanos , Biomarcadores
5.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37269831

RESUMEN

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Asunto(s)
Longevidad , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Longevidad/genética , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/genética , Mamíferos/genética , Perfilación de la Expresión Génica
6.
Cell ; 186(1): 194-208.e18, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36580914

RESUMEN

The diversity and complex organization of cells in the brain have hindered systematic characterization of age-related changes in its cellular and molecular architecture, limiting our ability to understand the mechanisms underlying its functional decline during aging. Here, we generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using spatially resolved single-cell transcriptomics and quantified changes in gene expression and spatial organization of major cell types in these regions over the mouse lifespan. We observed substantially more pronounced changes in cell state, gene expression, and spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and immune cell activation during aging, particularly enriched in the subcortical white matter, and identified both similarities and notable differences in cell-activation patterns induced by aging and systemic inflammatory challenge. These results provide critical insights into age-related decline and inflammation in the brain.


Asunto(s)
Envejecimiento , Sustancia Blanca , Ratones , Animales , Envejecimiento/genética , Encéfalo/metabolismo , Neuroglía , Longevidad , Transcriptoma , Análisis de la Célula Individual
7.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608659

RESUMEN

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transducción de Señal
8.
Cell ; 185(9): 1455-1470, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35487190

RESUMEN

Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.


Asunto(s)
Restricción Calórica , Longevidad , Dieta , Estado Nutricional
9.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172257

RESUMEN

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Asunto(s)
Ceramidas , Proteínas de Unión al GTP , Animales , Humanos , Longevidad/genética , Células Endoteliales/metabolismo , Mamíferos/metabolismo
10.
Nat Rev Mol Cell Biol ; 25(1): 46-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37710009

RESUMEN

The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.


Asunto(s)
Caenorhabditis elegans , Transducción de Señal , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Transducción de Señal/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/genética , Longevidad/genética , Mamíferos/metabolismo
11.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
12.
Nat Immunol ; 23(2): 303-317, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949833

RESUMEN

Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Ferroptosis/inmunología , Memoria Inmunológica/inmunología , Longevidad/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Animales , Glucógeno Sintasa Quinasa 3 beta/inmunología , Peroxidación de Lípido/inmunología , Activación de Linfocitos/inmunología , Recuento de Linfocitos/métodos , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/inmunología
13.
Nat Rev Mol Cell Biol ; 23(1): 56-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518687

RESUMEN

Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.


Asunto(s)
Restricción Calórica , Salud , Longevidad/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Estrés Oxidativo
14.
Cell ; 177(2): 221-222, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951663

RESUMEN

Zhou et al. challenge the well-known beneficial effect of autophagy in promoting longevity. Evidence presented demonstrate that autophagy induction coupled with increased mitochondrial permeability is detrimental to organismal health in both the nematode Caenorhabditis elegans and mammals.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans , Animales , Caenorhabditis elegans , Longevidad , Permeabilidad
15.
Cell ; 179(6): 1246-1248, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778650

RESUMEN

Cells are protected from endoplasmic reticulum stress through the unfolded protein response (UPR). In this issue of Cell, Schinzel, Higuchi-Sanabria, Shalem et al., identify a mechanism that helps cells cope with ER stress but is independent of canonical UPR activation, instead involving the extracellular matrix hyaluronidase, TMEM2, as a signaling mediator.


Asunto(s)
Hialuronoglucosaminidasa , Longevidad , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Homeostasis , Respuesta de Proteína Desplegada
16.
Cell ; 177(1): 200-220, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901541

RESUMEN

Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.


Asunto(s)
Envejecimiento/genética , Longevidad/genética , Vertebrados/genética , Animales , Envejecimiento Saludable/genética , Humanos , Invertebrados/genética , Ratones , Modelos Animales
17.
Cell ; 178(2): 385-399.e20, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257025

RESUMEN

To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.


Asunto(s)
Longevidad , Selección Genética , Envejecimiento , Animales , Replicación del ADN , Evolución Molecular , Frecuencia de los Genes , Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Filogenia , Filogeografía
18.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761535

RESUMEN

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Asunto(s)
Caenorhabditis elegans/fisiología , Retículo Endoplásmico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Longevidad/fisiología , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/inmunología , Línea Celular , Proliferación Celular , Resistencia a la Enfermedad , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Humanos , Inmunidad Innata , Modelos Biológicos , Peso Molecular , Transducción de Señal
19.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929899

RESUMEN

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Animales , Autofagia/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Restricción Calórica , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Daño por Reperfusión/metabolismo , Transducción de Señal
20.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002797

RESUMEN

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Longevidad/genética , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Roturas del ADN de Doble Cadena/efectos de la radiación , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Masculino , Mutagénesis , Filogenia , Roedores/clasificación , Alineación de Secuencia , Sirtuinas/química , Sirtuinas/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA