Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7845): 320-325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33260195

RESUMEN

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas Atenuadas/inmunología , Vacuna contra la Fiebre Amarilla/genética , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/genética , Cricetinae , Modelos Animales de Enfermedad , Femenino , Glicosilación , Macaca fascicularis/genética , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Masculino , Mesocricetus/genética , Mesocricetus/inmunología , Mesocricetus/virología , Ratones , Seguridad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética
2.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38995674

RESUMEN

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Genotipo , Macaca fascicularis , ARN Viral , Viremia , Animales , Macaca fascicularis/virología , Alphavirus/genética , Alphavirus/patogenicidad , Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Infecciones por Alphavirus/virología , Infecciones por Alphavirus/veterinaria , Viremia/virología , ARN Viral/genética , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Modelos Animales de Enfermedad , Filogenia , Citocinas/genética , Citocinas/sangre
3.
Virol J ; 21(1): 209, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227837

RESUMEN

BACKGROUND: Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS: To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS: ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS: ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Feto , Complicaciones Infecciosas del Embarazo , Carga Viral , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Embarazo , Infección por el Virus Zika/virología , Feto/virología , Complicaciones Infecciosas del Embarazo/virología , Encéfalo/virología , Macaca fascicularis/virología , ARN Viral , Placenta/virología , Transmisión Vertical de Enfermedad Infecciosa
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34625475

RESUMEN

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Macaca fascicularis/inmunología , Enfermedades de los Primates/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/diagnóstico por imagen , Pulmón/inmunología , Pulmón/virología , Macaca fascicularis/virología , Masculino , Enfermedades de los Primates/virología , SARS-CoV-2/fisiología , Tomografía Computarizada por Rayos X/métodos , Esparcimiento de Virus/inmunología , Esparcimiento de Virus/fisiología
5.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280241

RESUMEN

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/veterinaria , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Depleción Linfocítica/veterinaria , Masculino , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral/inmunología
6.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730053

RESUMEN

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Asunto(s)
COVID-19/virología , Macaca fascicularis/virología , SARS-CoV-2/fisiología , Animales , Antivirales/farmacología , Número Básico de Reproducción , COVID-19/sangre , COVID-19/prevención & control , Citocinas/sangre , Modelos Animales de Enfermedad , Nasofaringe/virología , SARS-CoV-2/efectos de los fármacos , Tráquea/virología , Carga Viral , Replicación Viral/efectos de los fármacos
7.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700602

RESUMEN

Hepatitis E virus (HEV) is zoonotic and a major cause of acute viral hepatitis worldwide. Recently, we identified a novel HEV genotype 8 (HEV8) in Bactrian camels in Xinjiang, China. However, the epidemiology, pathogenicity, and zoonotic potential of HEV8 are unclear. Here, we present the prevalence of HEV8 in China and investigate its pathogenicity and cross-species transmission in cynomolgus macaques. Fresh fecal and milk samples from Bactrian camels collected from four provinces/regions in China were screened for HEV RNA by reverse transcriptase PCR (RT-PCR). An HEV8-positive sample was used to inoculate two cynomolgus macaques to examine the potential for cross-species infection. The pathogenicity of HEV8 was analyzed by testing HEV markers and liver function during the study period and histopathology of liver biopsy specimens at 3, 13, and 25 weeks postinoculation. Extrahepatic replication was tested by using reverse transcriptase quantitative PCR (RT-qPCR) and immunofluorescence assays. The overall prevalence of HEV8 RNA in Chinese Bactrian camels was 1.4% (4/295), and positive samples were found in three different provinces/regions in China. Histopathology confirmed acute and chronic HEV8 infections in the two monkeys. Multiple tissues were positive for HEV RNA and ORF2 proteins. Renal pathology was observed in the monkey with chronic hepatitis. Whole-genome sequencing showed only 1 to 3 mutations in the HEV8 in the fecal samples from the two monkeys compared to that from the camel. HEV8 is circulating in multiple regions in China. Infection of two monkeys with HEV8 induced chronic and systemic infections, demonstrating the high potential zoonotic risk of HEV8.IMPORTANCE It is estimated that one-third of the world population have been exposed to hepatitis E virus (HEV). In developed countries and China, zoonotic HEV strains are responsible for almost all acute and chronic HEV infection cases. It is always of immediate interest to investigate the zoonotic potential of novel HEV strains. In 2016, we discovered a novel HEV genotype, HEV8, in Bactrian camels, but the epidemiology, zoonotic potential, and pathogenicity of the virus were unknown. In the present study, we demonstrated that HEV8 was circulating in multiple regions in China and was capable of infecting cynomolgus macaques, a surrogate for humans, posing high risk of zoonosis. Chronic hepatitis, systemic infection, and renal pathology were observed. Collectively, these data indicate that HEV8 exhibits a high potential for zoonotic transmission. Considering the importance of Bactrian camels as livestock animals, risk groups, such as camelid meat and milk consumers, should be screened for HEV8 infection.


Asunto(s)
Camelus/virología , Virus de la Hepatitis E/genética , Hepatitis E/transmisión , Macaca fascicularis/virología , Animales , China , Heces/virología , Genotipo , Filogenia , ARN Viral/genética , Zoonosis/virología
8.
Nature ; 508(7496): 402-5, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24590073

RESUMEN

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Infecciones por Filoviridae/prevención & control , Infecciones por Filoviridae/virología , Filoviridae/efectos de los fármacos , Nucleósidos de Purina/farmacología , Adenina/análogos & derivados , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Animales de Enfermedad , Ebolavirus/efectos de los fármacos , Filoviridae/enzimología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Inyecciones Intramusculares , Macaca fascicularis/virología , Enfermedad del Virus de Marburg/prevención & control , Enfermedad del Virus de Marburg/virología , Marburgvirus/efectos de los fármacos , Nucleósidos de Purina/administración & dosificación , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacocinética , Pirrolidinas , ARN/biosíntesis , Factores de Tiempo
9.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720516

RESUMEN

The sexual transmission of viruses is responsible for the spread of multiple infectious diseases. Although the human immunodeficiency virus (HIV)/AIDS pandemic remains fueled by sexual contacts with infected semen, the origin of virus in semen is still unknown. In a substantial number of HIV-infected men, viral strains present in semen differ from the ones in blood, suggesting that HIV is locally produced within the genital tract. Such local production may be responsible for the persistence of HIV in semen despite effective antiretroviral therapy. In this study, we used single-genome amplification, amplicon sequencing (env gene), and phylogenetic analyses to compare the genetic structures of simian immunodeficiency virus (SIV) populations across all the male genital organs and blood in intravenously inoculated cynomolgus macaques in the chronic stage of infection. Examination of the virus populations present in the male genital tissues of the macaques revealed compartmentalized SIV populations in testis, epididymis, vas deferens, seminal vesicles, and urethra. We found genetic similarities between the viral strains present in semen and those in epididymis, vas deferens, and seminal vesicles. The contribution of male genital organs to virus shedding in semen varied among individuals and could not be predicted based on their infection or proinflammatory cytokine mRNA levels. These data indicate that rather than a single source, multiple genital organs are involved in the release of free virus and infected cells into semen. These findings have important implications for our understanding of systemic virus shedding and persistence in semen and for the design of eradication strategies to access viral reservoirs.IMPORTANCE Semen is instrumental for the dissemination of viruses through sexual contacts. Worryingly, a number of systemic viruses, such as HIV, can persist in this body fluid in the absence of viremia. The local source(s) of virus in semen, however, remains unknown. To elucidate the anatomic origin(s) of the virus released in semen, we compared viral populations present in semen with those in the male genital organs and blood of the Asian macaque model, using single-genome amplification, amplicon sequencing (env gene), and phylogenetic analysis. Our results show that multiple genital tissues harbor compartmentalized strains, some of them (i.e., from epididymis, vas deferens, and seminal vesicles) displaying genetic similarities with the viral populations present in semen. This study is the first to uncover local genital sources of viral populations in semen, providing a new basis for innovative targeted strategies to prevent and eradicate HIV in the male genital tract.


Asunto(s)
Genitales Masculinos/virología , Macaca fascicularis/virología , Semen/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral , Animales , Genómica , Macaca fascicularis/genética , Masculino , Filogenia , ARN Viral , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética
10.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29848582

RESUMEN

Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.


Asunto(s)
Sustitución de Aminoácidos , Anticuerpos Neutralizantes/metabolismo , Proteínas de la Cápside/genética , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/veterinaria , Macaca fascicularis/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Células COS , Chlorocebus aethiops , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Heparitina Sulfato/metabolismo , Macaca fascicularis/virología , Masculino , Células Vero , Virulencia
11.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23842494

RESUMEN

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Asunto(s)
Virus de la Influenza A , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Replicación Viral , Animales , Antivirales/farmacología , Células Cultivadas , Pollos/virología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Perros , Inhibidores Enzimáticos/farmacología , Femenino , Hurones/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza A/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Gripe Humana/tratamiento farmacológico , Macaca fascicularis/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Codorniz/virología , Porcinos/virología , Porcinos Enanos/virología , Replicación Viral/efectos de los fármacos
12.
J Infect Dis ; 218(suppl_5): S301-S304, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30085166

RESUMEN

Sequencing viral genomes during an outbreak can facilitate response and containment efforts. In this study, we describe a reverse transcription long-range polymerase chain reaction for efficient amplification and sequencing of the Ebola virus (EBOV) genome in 2 seminested reactions. We demonstrate that our method remains robust with complex biological samples by amplifying and sequencing the EBOV genome from EBOV-infected nonhuman primates (NHPs). We further demonstrate that we are able to recover viral genomes from starting concentrations as low as 103 50% tissue culture infective dose (TCID50)/mL, suggesting that this method can be employed to sequence EBOV genomes from ecologically or clinically derived samples.


Asunto(s)
Ebolavirus/genética , Genoma Viral/genética , Fiebre Hemorrágica Ebola/virología , Reacción en Cadena de la Polimerasa/métodos , Animales , Brotes de Enfermedades , Humanos , Macaca fascicularis/virología , Análisis de Secuencia de ARN/métodos
13.
Emerg Infect Dis ; 24(7): 1285-1291, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29912712

RESUMEN

In August 2015, a nonhuman primate facility south of Manila, the Philippines, noted unusual deaths of 6 cynomolgus monkeys (Macaca fascicularis), characterized by generalized rashes, inappetence, or sudden death. We identified Reston ebolavirus (RESTV) infection in monkeys by using serologic and molecular assays. We isolated viruses in tissues from infected monkeys and determined viral genome sequences. RESTV found in the 2015 outbreak is genetically closer to 1 of the 4 RESTVs that caused the 2008 outbreak among swine. Eight macaques, including 2 also infected with RESTV, tested positive for measles. Concurrently, the measles virus was circulating throughout the Philippines, indicating that the infection of the macaques may be a reverse zoonosis. Improved biosecurity measures will minimize the public health risk, as well as limit the introduction of disease and vectors.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Ebolavirus , Fiebre Hemorrágica Ebola/veterinaria , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/virología , Animales , Enfermedades Transmisibles Emergentes/historia , Ebolavirus/clasificación , Ebolavirus/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Humanos , Macaca fascicularis/virología , Enfermedades de los Monos/historia , Filipinas/epidemiología , Filogenia
14.
PLoS Pathog ; 12(11): e1006014, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27829026

RESUMEN

Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.


Asunto(s)
Infecciones por Citomegalovirus/transmisión , Citomegalovirus/genética , Modelos Animales de Enfermedad , Macaca fascicularis/virología , Macaca mulatta/virología , Animales , Infecciones por Citomegalovirus/genética , ADN Viral/análisis , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Especificidad de la Especie
15.
J Infect Dis ; 215(4): 554-558, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28011922

RESUMEN

Ebola virus disease is a serious illness of humans and nonhuman primates (NHPs). Direct contact has been shown to be the primary source of Ebola (EBOV) transmission. We used a high-volume air sampler to determine whether EBOV could be detected during 3 independent studies with EBOV-challenged NHPs. Viral RNA was recovered during days 9 and 10 of Study I and days 7 and 8 of Study III. Viral RNA levels were below limits of detection during all other collections. The results demonstrate that the biosafety level 4 (BSL-4) suit protects workers from aerosols in a BSL-4 environment using proper engineering and administrative controls.


Asunto(s)
Microbiología del Aire , Transmisión de Enfermedad Infecciosa , Ebolavirus/aislamiento & purificación , ARN Viral/aislamiento & purificación , Aerosoles/análisis , Animales , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/virología , Humanos , Límite de Detección , Macaca fascicularis/virología , Macaca mulatta/virología
16.
J Infect Dis ; 216(5): 582-593, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931216

RESUMEN

Antiviral compounds (eg, the neuraminidase inhibitor oseltamivir) are invaluable for the treatment of individuals infected with influenza A viruses of the H7N9 subtype (A[H7N9]), which have infected and killed hundreds of persons. However, oseltamivir treatment often leads to the emergence of resistant viruses in immunocompromised individuals. To better understand the emergence and properties of oseltamivir-resistant A(H7N9) viruses in immunosuppressed individuals, we infected immunosuppressed cynomolgus macaques with an A(H7N9) virus and treated them with oseltamivir. Disease severity and mortality were higher in immunosuppressed than in immunocompetent animals. Oseltamivir treatment at 2 different doses reduced A(H7N9) viral titers in infected animals, but even high-dose oseltamivir did not block viral replication sufficiently to suppress the emergence of resistant variants. Some resistant variants were not appreciably attenuated in cultured cells, but an oseltamivir-resistant A(H7N9) virus did not transmit among ferrets. These findings are useful for the control of A(H7N9) virus infections in clinical settings.


Asunto(s)
Farmacorresistencia Viral Múltiple , Huésped Inmunocomprometido , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Macaca fascicularis/virología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Oseltamivir/uso terapéutico , Animales , Antivirales/uso terapéutico , Relación Dosis-Respuesta a Droga , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H7N9 del Virus de la Influenza A/fisiología , Masculino , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Replicación Viral
17.
BMC Genomics ; 17: 277, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044312

RESUMEN

BACKGROUND: Cytomegaloviruses belong to a large, ancient, genus of DNA viruses comprised of a wide array of species-specific strains that occur in diverse array of hosts. METHODS: In this study we sequenced the ~217 Kb genome of a cytomegalovirus isolated from a Mauritius cynomolgus macaque, CyCMV Mauritius, and compared it to previously sequenced cytomegaloviruses from a cynomolgus macaque of Filipino origin (CyCMV Ottawa) and two from Indian rhesus macaques (RhCMV 180.92 and RhCMV 68-1). RESULTS: Though more closely related to CyCMV Ottawa, CyCMV Mauritius is less genetically distant from both RhCMV strains than is CyCMV Ottawa. Several individual genes, including homologues of CMV genes RL11B, UL123, UL83b, UL84 and a homologue of mammalian COX-2, show a closer relationship between homologues of CyCMV Mauritius and the RhCMVs than between homologues of CyCMV Mauritius and CyCMV Ottawa. A broader phylogenetic analysis of 12 CMV strains from eight species recovers evolutionary relationships among viral strains that mirror those amongst the host species, further demonstrating co-evolution of host and virus. CONCLUSIONS: Phylogenetic analyses of rhesus and cynomolgus macaque CMV genome sequences demonstrate co-speciation of the virus and host.


Asunto(s)
Evolución Biológica , Citomegalovirus/clasificación , Genoma Viral , Macaca fascicularis/virología , Macaca mulatta/virología , Filogenia , Animales , Citomegalovirus/genética , Citomegalovirus/aislamiento & purificación , ADN Viral/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
J Gen Virol ; 97(11): 3017-3023, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27609630

RESUMEN

A new simian retrovirus (SRV) subtype was discovered in China and the USA from Cambodian-origin cynomolgus monkeys. Histopathological examination from necropsied animals showed multifocal lymphoplasmacystic and histocytic inflammation. The complete genome sequences demonstrated that the US virus isolates were nearly identical (99.91-99.93 %) and differed only slightly (99.13-99.16 % identical) from the China isolate. Phylogenetic analysis showed that the new virus isolates formed a distinct branch of SRV-1 through -7, and therefore were named this subtype, SRV-8. This SRV-8 variant was also phylogenetically and serologically more closely related to SRV-4 than any other SRV subtype.


Asunto(s)
Enfermedades de los Monos/virología , Infecciones por Retroviridae/veterinaria , Retrovirus de los Simios/aislamiento & purificación , Animales , Macaca fascicularis/virología , Sistemas de Lectura Abierta , Filogenia , Infecciones por Retroviridae/virología , Retrovirus de los Simios/clasificación , Retrovirus de los Simios/genética , Proteínas Virales/genética
19.
Xenotransplantation ; 23(4): 320-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27440468

RESUMEN

BACKGROUND: Xenotransplantation using pig cells, tissues or organs may be associated with the transmission of porcine zoonotic micro-organisms. Hepatitis E virus (HEV), porcine cytomegalovirus (PCMV) and porcine endogenous retroviruses (PERVs) are potentially zoonotic micro-organisms which do not show clinical symptoms in pigs and which are due to the low expression level difficult to detect. Göttingen Minipigs (GöMP) are often used for biomedical investigations and they are well characterized concerning the presence of numerous bacteria, fungi, viruses and parasites and therefore may be used for islet cell transplantation. METHODS: Islet cells derived from three GöMP were transplanted into four healthy, non-diabetic cynomolgus monkeys using a macroencapsulation device. PCR, nested PCR, real-time PCR, real-time RT-PCR and Western blot analyses were used to estimate the presence of PERV, PCMV and HEV in the donors and recipients. RESULTS: Using sensitive detection methods, no HEV was found in the donor pigs and in the pig islet cell preparations. Antibodies against PERV, PCMV and HEV were not found in all cynomolgus monkeys with exception of one monkey showing an immune response against HEV. Using real-time PCR, no PCMV and HEV were found in the sera of all monkeys. CONCLUSION: Although the donor islet cells and the recipients were negative for HEV using PCR and Western blot analysis, in one recipient, antibodies against HEV were found, indicating infection in a single case. All recipients were negative for antibodies against PERV, and all were negative for PCMV, indicating absence of infection. As HEV was not detected in the donor pig before transplantation, a more complex and regular screening of the animals using highly sensitive methods is required to avoid virus transmission.


Asunto(s)
Islotes Pancreáticos/virología , Macaca fascicularis/virología , Porcinos Enanos/virología , Trasplante Heterólogo , Animales , Virus ADN/genética , Retrovirus Endógenos , Virus de la Hepatitis E , Trasplante de Islotes Pancreáticos/métodos , Porcinos , Trasplante Heterólogo/métodos
20.
Mem Inst Oswaldo Cruz ; 111(4): 258-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27074255

RESUMEN

This study was conducted to analyse the course and the outcome of the liver disease in the co-infected animals in order to evaluate a possible synergic effect of human parvovirus B19 (B19V) and hepatitis A virus (HAV) co-infection. Nine adult cynomolgus monkeys were inoculated with serum obtained from a fatal case of B19V infection and/or a faecal suspension of acute HAV. The presence of specific antibodies to HAV and B19V, liver enzyme levels, viraemia, haematological changes, and necroinflammatory liver lesions were used for monitoring the infections. Seroconversion was confirmed in all infected groups. A similar pattern of B19V infection to human disease was observed, which was characterised by high and persistent viraemia in association with reticulocytopenia and mild to moderate anaemia during the period of investigation (59 days). Additionally, the intranuclear inclusion bodies were observed in pro-erythroblast cell from an infected cynomolgus and B19V Ag in hepatocytes. The erythroid hypoplasia and decrease in lymphocyte counts were more evident in the co-infected group. The present results demonstrated, for the first time, the susceptibility of cynomolgus to B19V infection, but it did not show a worsening of liver histopathology in the co-infected group.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A/complicaciones , Fallo Hepático Agudo/virología , Macaca fascicularis/virología , Infecciones por Parvoviridae/complicaciones , Parvovirus B19 Humano , Animales , Anticuerpos Antivirales/sangre , Coinfección/virología , Modelos Animales de Enfermedad , Hepatitis A/inmunología , Virus de la Hepatitis A/inmunología , Infecciones por Parvoviridae/inmunología , Parvovirus B19 Humano/inmunología , Viremia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA