Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Reprod ; 38(11): 2187-2195, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697661

RESUMEN

STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Células del Cúmulo , Oocitos , Femenino , Humanos , Embarazo , Adulto , Células del Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Oocitos/metabolismo , Oogénesis , Malonatos/metabolismo , Malonatos/farmacología
2.
J Nat Prod ; 86(3): 550-556, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36897305

RESUMEN

The lichen natural products pulvinamide, rhizocarpic acid, and epanorin have been synthesized and characterized spectroscopically and by X-ray crystallography. The syntheses, by ring-opening of pulvinic acid dilactone (PAD), may well be biomimetic, given the well-known occurrence of PAD in lichen. The enantiomers, ent-rhizocarpic acid and ent-epanorin, and corresponding carboxylic acids, norrhizocarpic acid and norepanorin, were similarly prepared. All compounds were assessed for growth inhibitory activity against selected bacteria, fungi, a protist, a mammalian tumor cell line, and normal cells. Rhizocarpic acid is weakly antibacterial (Bacillus subtilis MIC = 50 µg/mL) and possesses modest but selective antitumor activity (NS-1 murine myeloma MIC = 3.1 µg/mL) with >10-fold potency relative to its enantiomer (MIC = 50 µg/mL).


Asunto(s)
Líquenes , Animales , Ratones , Antibacterianos/química , Bacterias , Hongos , Líquenes/química , Malonatos/metabolismo , Mamíferos , Pruebas de Sensibilidad Microbiana
3.
Mol Cell ; 59(2): 321-32, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26073543

RESUMEN

Protein acylation links energetic substrate flux with cellular adaptive responses. SIRT5 is a NAD(+)-dependent lysine deacylase and removes both succinyl and malonyl groups. Using affinity enrichment and label free quantitative proteomics, we characterized the SIRT5-regulated lysine malonylome in wild-type (WT) and Sirt5(-/-) mice. 1,137 malonyllysine sites were identified across 430 proteins, with 183 sites (from 120 proteins) significantly increased in Sirt5(-/-) animals. Pathway analysis identified glycolysis as the top SIRT5-regulated pathway. Importantly, glycolytic flux was diminished in primary hepatocytes from Sirt5(-/-) compared to WT mice. Substitution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic acid, a malonyllysine mimic, suppressed its enzymatic activity. Comparison with our previous reports on acylation reveals that malonylation targets a different set of proteins than acetylation and succinylation. These data demonstrate that SIRT5 is a global regulator of lysine malonylation and provide a mechanism for regulation of energetic flux through glycolysis.


Asunto(s)
Sirtuinas/metabolismo , Acilación , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Citosol/metabolismo , Técnicas de Silenciamiento del Gen , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Células HEK293 , Humanos , Hígado/metabolismo , Malonatos/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Imitación Molecular , Sirtuinas/deficiencia , Sirtuinas/genética
4.
Mol Microbiol ; 116(2): 516-537, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33892520

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/fisiología , Malonatos/metabolismo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/fisiología , Antibacterianos/farmacología , Biomineralización/fisiología , Catalasa/biosíntesis , Decanoatos , Disacáridos/biosíntesis , Glicerol/metabolismo , Norfloxacino/farmacología , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Serina Endopeptidasas/biosíntesis , Virulencia , Factores de Virulencia/metabolismo
5.
BMC Plant Biol ; 22(1): 503, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289454

RESUMEN

BACKGROUND: Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass species with well-developed stolons, which lay the foundation for the fast propagation of bermudagrass plants through asexual clonal growth. However, the growth and development of bermudagrass stolons are still poorly understood at the molecular level. RESULTS: In this study, we comprehensively analyzed the acetylation and succinylation modifications of proteins in fast-growing stolons of the bermudagrass cultivar Yangjiang. A total of 4657 lysine acetylation sites on 1914 proteins and 226 lysine succinylation sites on 128 proteins were successfully identified using liquid chromatography coupled to tandem mass spectrometry, respectively. Furthermore, 78 proteins and 81 lysine sites were found to be both acetylated and succinylated. Functional enrichment analysis revealed that acetylated proteins regulate diverse reactions of carbohydrate metabolism and protein turnover, whereas succinylated proteins mainly regulate the citrate cycle. These results partly explained the different growth disturbances of bermudagrass stolons under treatment with sodium butyrate and sodium malonate, which interfere with protein acetylation and succinylation, respectively. Moreover, 140 acetylated proteins and 42 succinylated proteins were further characterized having similarly modified orthologs in other grass species. Site-specific mutations combined with enzymatic activity assays indicated that the conserved acetylation of catalase and succinylation of malate dehydrogenase both inhibited their activities, further implying important regulatory roles of the two modifications. CONCLUSION: In summary, our study implied that lysine acetylation and succinylation of proteins possibly play important regulatory roles in the fast growth of bermudagrass stolons. The results not only provide new insights into clonal growth of bermudagrass but also offer a rich resource for functional analyses of protein lysine acetylation and succinylation in plants.


Asunto(s)
Cynodon , Proteoma , Acetilación , Proteoma/metabolismo , Cynodon/genética , Lisina/metabolismo , Malato Deshidrogenasa/metabolismo , Catalasa/metabolismo , Ácido Butírico/metabolismo , Procesamiento Proteico-Postraduccional , Malonatos/metabolismo , Sodio/metabolismo , Citratos/metabolismo
6.
Metab Eng ; 73: 1-10, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35643281

RESUMEN

Malonate is a platform chemical that has been utilized to synthesize many valuable chemical compounds. Here, Saccharomyces cerevisiae was metabolically engineered to produce malonate through the malonyl-CoA pathway. To construct the key step of converting malonyl-CoA to malonate, a native mitochondrial 3-hydroxyisobutyryl-CoA hydrolase gene EHD3 was mutated to target the cytoplasm and obtain malonyl-CoA hydrolase activity. The malonyl-CoA hydrolase activity of Ehd3 was achieved by mutating the malonyl-CoA binding site F121 to I121 and the active site E124 to seven amino acids (S/T/H/K/R/N/Q). We identified that the strain with E124S mutation had the highest malonate titer with 13.6 mg/L. Genomic integration of the mutant EHD3 and ACC1** to delta sequence sites was further explored to increase their reliable expression. Accordingly, a screening method with the work flow of fluorescence detection, shake-tube fermentation, and shake-flask fermentation was constructed to screen high copy delta sequences efficiently. The malonate titer was improved to 73.55 mg/L after screening the ∼1500 integrative strains, which was increased 4.4-folds than that of the episomal strain. We further engineered the strain by regulating the expression of key enzyme in the malonyl-CoA pathway to improve the precursor supply and inhibiting its competing pathways, and the final engineered strain LMA-16 produced 187.25 mg/L in the flask, 14-fold compared with the initial episomal expression strain. Finally, the combined efforts increased the malonate titer to 1.62 g/L in fed-batch fermentation.


Asunto(s)
Hidrolasas , Malonatos , Malonil Coenzima A , Ingeniería Metabólica , Saccharomyces cerevisiae , Fermentación , Hidrolasas/genética , Hidrolasas/metabolismo , Malonatos/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Ingeniería Metabólica/métodos , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319827

RESUMEN

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Transporte de Catión/genética , Isocitrato Deshidrogenasa/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Procesamiento Proteico-Postraduccional , Proteínas Transportadoras de Solutos/genética , Acetilación , Animales , Transporte Biológico , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proteínas de Transporte de Catión/deficiencia , Metabolismo Energético , Femenino , Redes Reguladoras de Genes , Isocitrato Deshidrogenasa/metabolismo , Masculino , Malonatos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/deficiencia , Modelos Moleculares , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Transporte de Fosfato/deficiencia , Fosfatos , Conformación Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Proteínas Transportadoras de Solutos/deficiencia
8.
Brief Bioinform ; 20(6): 2185-2199, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30351377

RESUMEN

As a newly discovered post-translational modification (PTM), lysine malonylation (Kmal) regulates a myriad of cellular processes from prokaryotes to eukaryotes and has important implications in human diseases. Despite its functional significance, computational methods to accurately identify malonylation sites are still lacking and urgently needed. In particular, there is currently no comprehensive analysis and assessment of different features and machine learning (ML) methods that are required for constructing the necessary prediction models. Here, we review, analyze and compare 11 different feature encoding methods, with the goal of extracting key patterns and characteristics from residue sequences of Kmal sites. We identify optimized feature sets, with which four commonly used ML methods (random forest, support vector machines, K-nearest neighbor and logistic regression) and one recently proposed [Light Gradient Boosting Machine (LightGBM)] are trained on data from three species, namely, Escherichia coli, Mus musculus and Homo sapiens, and compared using randomized 10-fold cross-validation tests. We show that integration of the single method-based models through ensemble learning further improves the prediction performance and model robustness on the independent test. When compared to the existing state-of-the-art predictor, MaloPred, the optimal ensemble models were more accurate for all three species (AUC: 0.930, 0.923 and 0.944 for E. coli, M. musculus and H. sapiens, respectively). Using the ensemble models, we developed an accessible online predictor, kmal-sp, available at http://kmalsp.erc.monash.edu/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for PTM site prediction, expedite the discovery of new malonylation and other PTM types and facilitate hypothesis-driven experimental validation of novel malonylated substrates and malonylation sites.


Asunto(s)
Biología Computacional , Lisina/metabolismo , Aprendizaje Automático , Malonatos/metabolismo , Animales , Humanos
9.
J Inherit Metab Dis ; 44(5): 1215-1225, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33973257

RESUMEN

Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Variación Genética , Errores Innatos del Metabolismo Lipídico/genética , Malonatos/metabolismo , Enzima Bifuncional Peroxisomal/genética , Acil-CoA Deshidrogenasa/genética , Alelos , Frecuencia de los Genes , Genotipo , Células HEK293 , Humanos , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa
10.
Angew Chem Int Ed Engl ; 60(36): 19957-19964, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34164914

RESUMEN

Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.


Asunto(s)
Malonatos/metabolismo , Péptidos/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatasas/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Malonatos/química , Estructura Molecular , Péptidos/química , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/química , Sulfatasas/química
11.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220835

RESUMEN

The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of R. palustris with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of R. palustris, which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by rpa2047 to rpa2049 and rpa2541 to rpa2543 were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that R. palustris uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure.IMPORTANCE There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium Rhodopseudomonas palustris grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. R. palustris cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that R. palustris is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.


Asunto(s)
Malonatos/metabolismo , Redes y Vías Metabólicas , Rhodopseudomonas/genética , Biodegradación Ambiental , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Rhodopseudomonas/crecimiento & desarrollo , Rhodopseudomonas/metabolismo
12.
Exp Eye Res ; 190: 107864, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678036

RESUMEN

Acylated lysine residues represent major chemical modifications in proteins. We investigated the malonylation and propionylation of lysine residues (MalK, PropK) in the proteins of aging human lenses. Western blot results showed that the two modifications are present in human lens proteins. Liquid chromatography-mass spectrometry (LC-MS/MS) results showed 4-18 and 4-32 pmol/mg protein of MalK and PropK, respectively, in human lens proteins with no apparent changes related to aging. Mass spectrometry results revealed that MalK- and PropK-modified lysine residues are present in all major crystallins, other cytosolic proteins, and membrane and cytoskeletal proteins of the lens. Several mitochondrial and cytosolic proteins in cultured human lens epithelial cells showed MalK and PropK modifications. Sirtuin 3 (SIRT3) and sirtuin 5 (SIRT5) were present in human lens epithelial and fiber cells. Moreover, lens epithelial cell lysate deacylated propionylated and malonylated lysozyme. The absence of SIRT3 and SIRT5 led to higher PropK and MalK levels in mouse lenses. Together, these data suggest that MalK and PropK are widespread modifications in lens and SIRT3 and SIRT5 could regulate their levels in lens epithelial cells.


Asunto(s)
Cristalinas/metabolismo , Cristalino/metabolismo , Lisina/metabolismo , Malonatos/metabolismo , Propionatos/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo , Envejecimiento/fisiología , Animales , Western Blotting , Cromatografía Liquida , Proteínas del Citoesqueleto/metabolismo , Citosol/metabolismo , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/metabolismo , Técnicas de Cultivo de Órganos , Adhesión en Parafina , Espectrometría de Masas en Tándem
13.
Anal Biochem ; 600: 113746, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32333904

RESUMEN

Metabolite profiling in anaerobic alkane biodegradation plays an important role in revealing activation mechanisms. Apart from alkylsuccinates, which are considered to be the usual biomarkers via fumarate addition, the downstream metabolites of C-skeleton rearrangement can also be regarded as biomarkers. However, it is difficult to detect intermediate metabolites in both environmental samples and enrichment cultures, resulting in lacking direct evidence to prove the occurrence of fumarate addition pathway. In this work, a synthetic method of rearrangement metabolites was established. Four compounds, namely, propylmalonic acid, 2-(2-methylbutyl)malonic acid, 2-(2-methylpentyl)malonic acid and 2-(2-methyloctyl)malonic acid, were synthesized and determined by four derivatization approaches. Besides, their mass spectra were obtained. Four characteristic ions were observed at m/z 133 + 14n, 160 + 28n, 173 + 28n and [M - (45 + 14n)]+ (n = 0 and 2 for ethyl and n-butyl esters, respectively). For methyl esterification, mass spectral features were m/z 132, 145 and [M - 31]+, while for silylation, fragments were m/z 73, 147, 217, 248, 261 and [M - 15]+. These data provide basis on identification of potential rearrangement metabolites in anaerobic alkane biodegradation via fumarate addition.


Asunto(s)
Alcanos/metabolismo , Fumaratos/metabolismo , Malonatos/metabolismo , Alcanos/química , Anaerobiosis , Fumaratos/química , Malonatos/química , Espectrometría de Masas
14.
J Ind Microbiol Biotechnol ; 47(3): 311-318, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140931

RESUMEN

Glutaric acid is an important organic acid applied widely in different fields. Most previous researches have focused on the production of glutaric acid in various strains using the 5-aminovaleric acid (AMV) or pentenoic acid synthesis pathways. We previously utilized a five-step reversed adipic acid degradation pathway (RADP) in Escherichia coli BL21 (DE3) to construct strain Bgl146. Herein, we found that malonyl-CoA was strictly limited in this strain, and increasing its abundance could improve glutaric acid production. We, therefore, constructed a malonic acid uptake pathway in E. coli using matB (malonic acid synthetase) and matC (malonic acid carrier protein) from Clover rhizobia. The titer of glutaric acid was improved by 2.1-fold and 1.45-fold, respectively, reaching 0.56 g/L and 4.35 g/L in shake flask and batch fermentation following addition of malonic acid. Finally, the highest titer of glutaric acid was 6.3 g/L in fed-batch fermentation at optimized fermentation conditions.


Asunto(s)
Escherichia coli/metabolismo , Glutaratos/metabolismo , Malonatos/metabolismo , Adipatos/metabolismo , Aminoácidos Neutros/metabolismo , Vías Biosintéticas , Escherichia coli/genética , Fermentación , Malonil Coenzima A/metabolismo
15.
J Inherit Metab Dis ; 42(1): 107-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30740739

RESUMEN

BACKGROUND: The clinical significance of combined malonic and methylmalonic aciduria due to ACSF3 deficiency (CMAMMA) is controversial. In most publications, affected patients were identified during the investigation of various complaints. METHODS: Using a cross-sectional multicenter retrospective natural history study, we describe the course of all known CMAMMA individuals in the province of Quebec. RESULTS: We identified 25 CMAMMA patients (6 months to 30 years old) with a favorable outcome regardless of treatment. All but one came to clinical attention through the Provincial Neonatal Urine Screening Program (screening on day 21 of life). Median methylmalonic acid (MMA) levels ranged from 107 to 857 mmol/mol creatinine in urine (<10) and from 8 to 42 µmol/L in plasma (<0.4); median urine malonic acid (MA) levels ranged from 9 to 280 mmol/mol creatinine (<5). MMA was consistently higher than MA. These findings are comparable to those previously reported in CMAMMA. Causal ACSF3 mutations were identified in all patients for whom genotyping was performed (76% of cases). The most common ACSF3 mutations in our cohort were c.1075G > A (p.E359K) and c.1672C > T (p.R558W), representing 38.2 and 20.6% of alleles in genotyped families, respectively; we also report several novel mutations. CONCLUSION: Because our province still performs urine newborn screening, our patient cohort is the only one free of selection bias. Therefore, the favorable clinical course observed suggests that CMAMMA is probably a benign condition, although we cannot exclude the possibility that a small minority of patients may present symptoms attributable to CMAMMA, perhaps as a result of interactions with other genetic or environmental factors.


Asunto(s)
Coenzima A Ligasas/genética , Errores Innatos del Metabolismo/genética , Mutación/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Estudios de Cohortes , Creatinina/metabolismo , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Malonatos/metabolismo , Ácido Metilmalónico/metabolismo , Tamizaje Neonatal/métodos , Estudios Retrospectivos , Adulto Joven
16.
Biosci Biotechnol Biochem ; 83(4): 763-767, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30654732

RESUMEN

Ethyl (R)-2-benzyloxy-2-isopropylhydrogenmalonate is a key intermediate for the synthesis of the side chain in ergopeptines. In this work, we adopted a method to prepare enantiomerically pure title monoester via immobilized Candida antarctica lipase B (Novozym 435)-catalyzed hydrolysis of the corresponding diester.


Asunto(s)
Dihidroergotoxina/síntesis química , Proteínas Fúngicas/química , Lipasa/química , Malonatos/síntesis química , Biocatálisis , Dihidroergotoxina/metabolismo , Enzimas Inmovilizadas/química , Hidrólisis , Malonatos/metabolismo , Solventes/química , Estereoisomerismo
17.
BMC Genomics ; 19(1): 209, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558883

RESUMEN

BACKGROUND: Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. RESULTS: In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. CONCLUSIONS: Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants.


Asunto(s)
Lisina/metabolismo , Malonatos/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Triticum/metabolismo , Biología Computacional , Proteómica/métodos
18.
J Comput Chem ; 39(22): 1757-1763, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29761520

RESUMEN

Malonylation is a recently discovered post-translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT-Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half-sphere exposure provides additional improvement to the prediction performance. SPRINT-Mal trained on mouse data yields robust performance for 10-fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews' Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT-Mal achieved comparable performance when testing on H. sapiens proteins without species-specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT-Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Bacterianas/química , Lisina/química , Aprendizaje Automático , Malonatos/química , Animales , Proteínas Bacterianas/metabolismo , Hominidae/metabolismo , Humanos , Lisina/metabolismo , Malonatos/metabolismo , Ratones , Estructura Molecular , Procesamiento Proteico-Postraduccional , Saccharopolyspora/química , Saccharopolyspora/metabolismo
19.
Bioinformatics ; 33(10): 1457-1463, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28025199

RESUMEN

MOTIVATION: Protein malonylation is a novel post-translational modification (PTM) which orchestrates a variety of biological processes. Annotation of malonylation in proteomics is the first-crucial step to decipher its physiological roles which are implicated in the pathological processes. Comparing with the expensive and laborious experimental research, computational prediction can provide an accurate and effective approach to the identification of many types of PTMs sites. However, there is still no online predictor for lysine malonylation. RESULTS: By searching from literature and database, a well-prepared up-to-data benchmark datasets were collected in multiple organisms. Data analyses demonstrated that different organisms were preferentially involved in different biological processes and pathways. Meanwhile, unique sequence preferences were observed for each organism. Thus, a novel malonylation site online prediction tool, called MaloPred, which can predict malonylation for three species, was developed by integrating various informative features and via an enhanced feature strategy. On the independent test datasets, AUC (area under the receiver operating characteristic curves) scores are obtained as 0.755, 0.827 and 0.871 for Escherichia coli ( E.coli ), Mus musculus ( M.musculus ) and Homo sapiens ( H.sapiens ), respectively. The satisfying results suggest that MaloPred can provide more instructive guidance for further experimental investigation of protein malonylation. AVAILABILITY AND IMPLEMENTATION: http://bioinfo.ncu.edu.cn/MaloPred.aspx . CONTACT: jdqiu@ncu.edu.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lisina/metabolismo , Malonatos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Programas Informáticos , Animales , Escherichia coli/metabolismo , Humanos , Ratones , Curva ROC
20.
Nat Chem Biol ; 12(10): 773-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547923

RESUMEN

Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.


Asunto(s)
Malonatos/metabolismo , Péptidos/metabolismo , Policétidos/metabolismo , Escherichia coli/metabolismo , Humanos , Malonatos/química , Conformación Molecular , Péptidos/química , Policétidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA