Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942016

RESUMEN

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Asunto(s)
Extinción Biológica , Genoma , Mamuts , Mutación , Animales , Mamuts/genética , Genoma/genética , Siberia , Filogenia , Evolución Molecular , Factores de Tiempo
2.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996487

RESUMEN

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Asunto(s)
Genoma , Mamuts , Piel , Animales , Mamuts/genética , Genoma/genética , Femenino , Elefantes/genética , Cromatina/genética , Fósiles , ADN Antiguo/análisis , Ratones , Humanos , Cromosoma X/genética
3.
Nature ; 617(7961): 533-539, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138076

RESUMEN

Hormones in biological media reveal endocrine activity related to development, reproduction, disease and stress on different timescales1. Serum provides immediate circulating concentrations2, whereas various tissues record steroid hormones accumulated over time3,4. Hormones have been studied in keratin, bones and teeth in modern5-8 and ancient contexts9-12; however, the biological significance of such records is subject to ongoing debate10,13-16, and the utility of tooth-associated hormones has not previously been demonstrated. Here we use liquid chromatography with tandem mass spectrometry paired with fine-scale serial sampling to measure steroid hormone concentrations in modern and fossil tusk dentin. An adult male African elephant (Loxodonta africana) tusk shows periodic increases in testosterone that reveal episodes of musth17-19, an annually recurring period of behavioural and physiological changes that enhance mating success20-23. Parallel assessments of a male woolly mammoth (Mammuthus primigenius) tusk show that mammoths also experienced musth. These results set the stage for wide-ranging studies using steroids preserved in dentin to investigate development, reproduction and stress in modern and extinct mammals. Because dentin grows by apposition, resists degradation, and often contains growth lines, teeth have advantages over other tissues that are used as records of endocrine data. Given the low mass of dentin powder required for analytical precision, we anticipate dentin-hormone studies to extend to smaller animals. Thus, in addition to broad applications in zoology and palaeontology, tooth hormone records could support medical, forensic, veterinary and archaeological studies.


Asunto(s)
Elefantes , Fósiles , Mamuts , Testosterona , Diente , Animales , Masculino , Elefantes/anatomía & histología , Elefantes/metabolismo , Mamuts/anatomía & histología , Mamuts/metabolismo , Esteroides/análisis , Esteroides/metabolismo , Testosterona/análisis , Testosterona/metabolismo , Diente/química , Diente/metabolismo , Dentina/química , Dentina/metabolismo
4.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
5.
Nature ; 600(7887): 86-92, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34671161

RESUMEN

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Asunto(s)
Biota , ADN Antiguo/análisis , ADN Ambiental/análisis , Metagenómica , Animales , Regiones Árticas , Cambio Climático/historia , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Extinción Biológica , Sedimentos Geológicos , Pradera , Groenlandia , Haplotipos/genética , Herbivoria/genética , Historia Antigua , Humanos , Lagos , Mamuts , Mitocondrias/genética , Perisodáctilos , Hielos Perennes , Filogenia , Plantas/genética , Dinámica Poblacional , Lluvia , Siberia , Análisis Espacio-Temporal , Humedales
8.
Environ Microbiol ; 26(2): e16589, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356049

RESUMEN

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.


Asunto(s)
Actinomycetales , Mamuts , Streptomyces , Animales , Filogenia , Genómica , Streptomyces/genética , Heces
9.
Dokl Biol Sci ; 517(1): 82-87, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861069

RESUMEN

Paleolandscapes of the first half of MIS 2 or the Last Glacial Maximum (LGM) were reconstructed based on the study of the first mammoth fauna locality found in the Abakan River valley and a comparison with other localities of the South Minusinsk Basin. Sediments of the Uytag geological section under study included silt interlayers underlain and overlain by sandstone rock slack fragments and were interpreted as weakly eroded diluvium. Studies of the Uytag locality made it possible to clarify the time and range of distribution in southern Siberia for several mammals (Ovis ammon, Equus ferus, Marmota baibacina, Sicista subtilis, Lagurus lagurus, and Microtus gregalis) and the Pleistocene bird Aquila chrysaetos. The age of the locality was confirmed by radiocarbon dating. The species composition of the Uytag fauna was similar to that of other localities of the same age and region. All known localities and single finds of faunal remains indicate that open steppe landscapes were widely developed in the South Minusinsk Basin during the LGM.


Asunto(s)
Fósiles , Siberia , Animales , Aves/clasificación , Mamuts/genética
10.
Mol Ecol ; 32(11): 2689-2691, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37212188

RESUMEN

When one thinks of the field of ancient DNA it conjures images of extinct megafauna, from mammoths and woolly rhinos, through to the giant, flightless elephant bird (but hopefully not dinosaurs - despite the pervasive idea of 'dino DNA' from Jurassic park). These taxa have fascinating evolutionary histories, and their extinction stories need to be told. At the other end of the vertebrate scale, however, is the often neglected 'small stuff' - lizards, frogs, and other herpetofauna. But here's the rub - extracting DNA from the bones of this 'small stuff' is not only difficult, it often destroys the sample. In this issue, Scarsbrook et al. (2023) describe a new way to study the ancient (or historical) DNA of small vertebrates that is minimally destructive. The authors use the method to reconstruct the dynamic evolutionary history of New Zealand geckos and make new insights into how remnant populations should be managed. This work provides some key insights into New Zealand geckos but also opens up opportunities of biomolecular research on the smallest of vouchered vertebrate samples held within museum collections.


Asunto(s)
ADN Antiguo , Mamuts , Animales , Sudor , ADN/genética , Evolución Biológica , Aves/genética , Mamuts/genética , Fósiles , Filogenia
12.
Nature ; 612(7938): E1-E3, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450914
13.
Ecol Lett ; 25(1): 125-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738712

RESUMEN

Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.


Asunto(s)
Mamuts , Animales , Efectos Antropogénicos , Clima , Extinción Biológica , Fósiles , Humanos , Mamuts/genética
14.
Amino Acids ; 54(6): 935-954, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434776

RESUMEN

The recent paleoproteomic studies, including paleo-metaproteomic analyses, improved our understanding of the dietary of ancient populations, the characterization of past human diseases, the reconstruction of the habitat of ancient species, but also provided new insights into the phylogenetic relationships between extant and extinct species. In this respect, the present work reports the results of the metaproteomic analysis performed on the middle part of a trunk, and on the portion of a trunk tip tissue of two different woolly mammoths some 30,000 years old. In particular, proteins were extracted by applying EVA (Ethylene-Vinyl Acetate studded with hydrophilic and hydrophobic resins) films to the surface of these tissues belonging to two Mammuthus primigenus specimens, discovered in two regions located in the Russian Far East, and then investigated via a shotgun MS-based approach. This approach allowed to obtain two interesting results: (i) an indirect description of the habitat of these two mammoths, and (ii) an improved characterization of the collagen type I, alpha-1 and alpha-2 chains (col1a1 and col1a2). Sequence characterization of the col1a1 and col1a2 highlighted some differences between M. primigenius and other Proboscidea together with the identification of three (two for col1a1, and one for col1a2) potentially diagnostic amino acidic mutations that could be used to reliably distinguish the Mammuthus primigenius with respect to the other two genera of elephantids (i.e., Elephas and Loxodonta), and the extinct American mastodon (i.e., Mammut americanum). The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the "original" endogenous peptides from contaminant ones. The data have been deposited to the ProteomeXchange with identifier < PXD029558 > .


Asunto(s)
Mamuts , Animales , Humanos , Recién Nacido , Colágeno Tipo I/genética , Ecosistema , Fósiles , Mamuts/genética , Espectrometría de Masas , Filogenia , Proteómica/métodos , Tecnología
15.
Nature ; 598(7881): 387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671132

Asunto(s)
Elefantes , Mamuts , Animales
16.
Nature ; 596(7872): 329, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34385615
17.
Nature ; 591(7849): 208-209, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597773
19.
Nature ; 537(7618): 45-49, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27509852

RESUMEN

During the Last Glacial Maximum, continental ice sheets isolated Beringia (northeast Siberia and northwest North America) from unglaciated North America. By around 15 to 14 thousand calibrated radiocarbon years before present (cal. kyr bp), glacial retreat opened an approximately 1,500-km-long corridor between the ice sheets. It remains unclear when plants and animals colonized this corridor and it became biologically viable for human migration. We obtained radiocarbon dates, pollen, macrofossils and metagenomic DNA from lake sediment cores in a bottleneck portion of the corridor. We find evidence of steppe vegetation, bison and mammoth by approximately 12.6 cal. kyr bp, followed by open forest, with evidence of moose and elk at about 11.5 cal. kyr bp, and boreal forest approximately 10 cal. kyr bp. Our findings reveal that the first Americans, whether Clovis or earlier groups in unglaciated North America before 12.6 cal. kyr bp, are unlikely to have travelled by this route into the Americas. However, later groups may have used this north-south passageway.


Asunto(s)
Migración Animal , Migración Humana/historia , Cubierta de Hielo , Animales , Bison/fisiología , ADN/análisis , Ciervos/fisiología , Bosques , Fósiles , Genómica , Sedimentos Geológicos/química , Historia Antigua , Humanos , Mamuts/fisiología , Modelos Teóricos , América del Norte , Polen , Datación Radiométrica , Siberia
20.
Mol Cell Proteomics ; 19(12): 2139-2157, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020190

RESUMEN

Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus Aspergillus niger that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and de novo sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by de novo sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.


Asunto(s)
Disulfuros/metabolismo , Péptido Hidrolasas/metabolismo , Proteómica , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Mamuts , Paleontología , Péptido Hidrolasas/química , Fosforilación , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA