Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.147
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(1): 9-41, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995519

RESUMEN

Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.


Asunto(s)
Mapeo Encefálico/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neocórtex/diagnóstico por imagen , Neocórtex/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Animales , Calcio/metabolismo , Ratones , Modelos Animales , Neurociencias/métodos
2.
Cell ; 181(4): 936-953.e20, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32386544

RESUMEN

Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 µm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 µm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Encéfalo/fisiología , Animales , Atlas como Asunto , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31955849

RESUMEN

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Asunto(s)
Cerebelo/fisiología , Toma de Decisiones/fisiología , Tiempo de Reacción/fisiología , Pez Cebra/fisiología , Animales , Conducta Animal/fisiología , Mapeo Encefálico/métodos , Cerebro/fisiología , Cognición/fisiología , Condicionamiento Operante/fisiología , Objetivos , Habénula/fisiología , Calor , Larva/fisiología , Actividad Motora/fisiología , Movimiento , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Rombencéfalo/fisiología
4.
Cell ; 174(3): 730-743.e22, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033368

RESUMEN

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.


Asunto(s)
Mapeo Encefálico/métodos , Conectoma/métodos , Red Nerviosa/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Dendritas , Drosophila melanogaster/anatomía & histología , Femenino , Microscopía Electrónica/métodos , Cuerpos Pedunculados , Neuronas , Olfato/fisiología , Programas Informáticos
5.
Annu Rev Neurosci ; 47(1): 21-40, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38360565

RESUMEN

It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.


Asunto(s)
Encéfalo , Humanos , Encéfalo/fisiología , Animales , Vías Visuales/fisiología , Mapeo Encefálico/métodos
6.
Cell ; 170(2): 393-406.e28, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28709004

RESUMEN

Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.


Asunto(s)
Mapeo Encefálico/métodos , Drosophila melanogaster/fisiología , Animales , Conducta Animal , Femenino , Locomoción , Masculino , Programas Informáticos
7.
Cell ; 165(7): 1803-1817, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27180908

RESUMEN

A scalable and high-throughput method to identify precise subcellular localization of endogenous proteins is essential for integrative understanding of a cell at the molecular level. Here, we developed a simple and generalizable technique to image endogenous proteins with high specificity, resolution, and contrast in single cells in mammalian brain tissue. The technique, single-cell labeling of endogenous proteins by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (SLENDR), uses in vivo genome editing to insert a sequence encoding an epitope tag or a fluorescent protein to a gene of interest by CRISPR-Cas9-mediated homology-directed repair (HDR). Single-cell, HDR-mediated genome editing was achieved by delivering the editing machinery to dividing neuronal progenitors through in utero electroporation. We demonstrate that SLENDR allows rapid determination of the localization and dynamics of many endogenous proteins in various cell types, regions, and ages in the brain. Thus, SLENDR provides a high-throughput platform to map the subcellular localization of endogenous proteins with the resolution of micro- to nanometers in the brain.


Asunto(s)
Química Encefálica , Mapeo Encefálico/métodos , Proteínas del Tejido Nervioso/análisis , Encéfalo/embriología , Sistemas CRISPR-Cas , Ingeniería Genética , Neuroimagen/métodos , Neuronas/química , Análisis de la Célula Individual
8.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238022

RESUMEN

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Asunto(s)
Conducta Animal , Mapeo Encefálico/métodos , Corteza Prefrontal/citología , Animales , Conducta Apetitiva , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cocaína/administración & dosificación , Electrochoque , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/metabolismo
9.
Nature ; 617(7960): 351-359, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076628

RESUMEN

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Asunto(s)
Mapeo Encefálico , Cognición , Corteza Motora , Mapeo Encefálico/métodos , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Humanos , Recién Nacido , Lactante , Niño , Animales , Macaca/anatomía & histología , Macaca/fisiología , Pie/fisiología , Boca/fisiología , Conjuntos de Datos como Asunto
10.
Nature ; 603(7902): 654-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296861

RESUMEN

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Cognición , Conjuntos de Datos como Asunto , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Fenotipo , Reproducibilidad de los Resultados
11.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831210

RESUMEN

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Asunto(s)
Encéfalo , Conectoma , Pan troglodytes , Sustancia Blanca , Pan troglodytes/anatomía & histología , Animales , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Masculino , Vías Nerviosas/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Mapeo Encefálico/métodos
12.
Nat Rev Neurosci ; 23(6): 361-375, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35444305

RESUMEN

Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.


Asunto(s)
Encefalopatías , Neurociencias , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Neuroimagen/métodos
13.
Nat Rev Neurosci ; 23(6): 376-388, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35410358

RESUMEN

Although we are continuously bombarded with visual input, only a fraction of incoming visual events is perceived, remembered or acted on. The neural underpinnings of various forms of visual priority coding, including perceptual expertise, goal-directed attention, visual salience, image memorability and preferential looking, have been studied. Here, we synthesize information from these different examples to review recent developments in our understanding of visual priority coding and its neural correlates, with a focus on the role of behaviour to evaluate candidate correlates. We propose that the brain combines different types of priority into a unified priority signal while also retaining the ability to differentiate between them, and that this happens by leveraging partially overlapping low-dimensional neural subspaces for each type of priority that are shared with the downstream neural populations involved in decision-making. Finally, we describe the gulfs in understanding that have resulted from different research approaches, and we point towards future directions that will lead to fundamental insights about neural coding and how prioritization influences visually guided behaviours.


Asunto(s)
Atención , Mapeo Encefálico , Encéfalo , Mapeo Encefálico/métodos , Humanos , Recuerdo Mental , Percepción Visual
14.
PLoS Biol ; 22(1): e3002452, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198502

RESUMEN

Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.


Asunto(s)
Mapeo Encefálico , Toma de Decisiones , Humanos , Mapeo Encefálico/métodos , Asunción de Riesgos , Incertidumbre , Lóbulo Parietal , Imagen por Resonancia Magnética/métodos
15.
PLoS Biol ; 22(6): e3002624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941452

RESUMEN

Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.


Asunto(s)
Hipotálamo , Imagen por Resonancia Magnética , Humanos , Hipotálamo/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Adulto , Femenino , Adulto Joven , Hipocampo/fisiología , Reacción de Fuga/fisiología , Aprendizaje Profundo , Mapeo Encefálico/métodos , Sustancia Gris Periacueductal/fisiología
16.
PLoS Biol ; 22(4): e3002564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557761

RESUMEN

Behavioral and neuroscience studies in humans and primates have shown that memorability is an intrinsic property of an image that predicts its strength of encoding into and retrieval from memory. While previous work has independently probed when or where this memorability effect may occur in the human brain, a description of its spatiotemporal dynamics is missing. Here, we used representational similarity analysis (RSA) to combine functional magnetic resonance imaging (fMRI) with source-estimated magnetoencephalography (MEG) to simultaneously measure when and where the human cortex is sensitive to differences in image memorability. Results reveal that visual perception of High Memorable images, compared to Low Memorable images, recruits a set of regions of interest (ROIs) distributed throughout the ventral visual cortex: a late memorability response (from around 300 ms) in early visual cortex (EVC), inferior temporal cortex, lateral occipital cortex, fusiform gyrus, and banks of the superior temporal sulcus. Image memorability magnitude results are represented after high-level feature processing in visual regions and reflected in classical memory regions in the medial temporal lobe (MTL). Our results present, to our knowledge, the first unified spatiotemporal account of visual memorability effect across the human cortex, further supporting the levels-of-processing theory of perception and memory.


Asunto(s)
Encéfalo , Percepción Visual , Animales , Humanos , Percepción Visual/fisiología , Encéfalo/fisiología , Corteza Cerebral/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Magnetoencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
17.
PLoS Biol ; 22(8): e3002732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133721

RESUMEN

Music can evoke pleasurable and rewarding experiences. Past studies that examined task-related brain activity revealed individual differences in musical reward sensitivity traits and linked them to interactions between the auditory and reward systems. However, state-dependent fluctuations in spontaneous neural activity in relation to music-driven rewarding experiences have not been studied. Here, we used functional MRI to examine whether the coupling of auditory-reward networks during a silent period immediately before music listening can predict the degree of musical rewarding experience of human participants (N = 49). We used machine learning models and showed that the functional connectivity between auditory and reward networks, but not others, could robustly predict subjective, physiological, and neurobiological aspects of the strong musical reward of chills. Specifically, the right auditory cortex-striatum/orbitofrontal connections predicted the reported duration of chills and the activation level of nucleus accumbens and insula, whereas the auditory-amygdala connection was associated with psychophysiological arousal. Furthermore, the predictive model derived from the first sample of individuals was generalized in an independent dataset using different music samples. The generalization was successful only for state-like, pre-listening functional connectivity but not for stable, intrinsic functional connectivity. The current study reveals the critical role of sensory-reward connectivity in pre-task brain state in modulating subsequent rewarding experience.


Asunto(s)
Percepción Auditiva , Imagen por Resonancia Magnética , Música , Placer , Recompensa , Humanos , Música/psicología , Masculino , Femenino , Placer/fisiología , Adulto , Percepción Auditiva/fisiología , Adulto Joven , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Estimulación Acústica , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Aprendizaje Automático
18.
Cell ; 148(3): 583-95, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304923

RESUMEN

Behavior cannot be predicted from a "connectome" because the brain contains a chemical "map" of neuromodulation superimposed upon its synaptic connectivity map. Neuromodulation changes how neural circuits process information in different states, such as hunger or arousal. Here we describe a genetically based method to map, in an unbiased and brain-wide manner, sites of neuromodulation under different conditions in the Drosophila brain. This method, and genetic perturbations, reveal that the well-known effect of hunger to enhance behavioral sensitivity to sugar is mediated, at least in part, by the release of dopamine onto primary gustatory sensory neurons, which enhances sugar-evoked calcium influx. These data reinforce the concept that sensory neurons constitute an important locus for state-dependent gain control of behavior and introduce a methodology that can be extended to other neuromodulators and model organisms.


Asunto(s)
Dopamina/metabolismo , Drosophila melanogaster/fisiología , Neurotransmisores/metabolismo , Transducción de Señal , Animales , Regulación del Apetito , Arrestina/metabolismo , Encéfalo/fisiología , Mapeo Encefálico/métodos , Conducta Alimentaria , Femenino , Receptores Dopaminérgicos/metabolismo , Células Receptoras Sensoriales/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(24): e2317707121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830105

RESUMEN

Human pose, defined as the spatial relationships between body parts, carries instrumental information supporting the understanding of motion and action of a person. A substantial body of previous work has identified cortical areas responsive to images of bodies and different body parts. However, the neural basis underlying the visual perception of body part relationships has received less attention. To broaden our understanding of body perception, we analyzed high-resolution fMRI responses to a wide range of poses from over 4,000 complex natural scenes. Using ground-truth annotations and an application of three-dimensional (3D) pose reconstruction algorithms, we compared similarity patterns of cortical activity with similarity patterns built from human pose models with different levels of depth availability and viewpoint dependency. Targeting the challenge of explaining variance in complex natural image responses with interpretable models, we achieved statistically significant correlations between pose models and cortical activity patterns (though performance levels are substantially lower than the noise ceiling). We found that the 3D view-independent pose model, compared with two-dimensional models, better captures the activation from distinct cortical areas, including the right posterior superior temporal sulcus (pSTS). These areas, together with other pose-selective regions in the LOTC, form a broader, distributed cortical network with greater view-tolerance in more anterior patches. We interpret these findings in light of the computational complexity of natural body images, the wide range of visual tasks supported by pose structures, and possible shared principles for view-invariant processing between articulated objects and ordinary, rigid objects.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Percepción Visual/fisiología , Postura/fisiología , Adulto Joven , Imagenología Tridimensional/métodos , Estimulación Luminosa/métodos , Algoritmos
20.
Proc Natl Acad Sci U S A ; 121(25): e2405588121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861607

RESUMEN

Many animals can extract useful information from the vocalizations of other species. Neuroimaging studies have evidenced areas sensitive to conspecific vocalizations in the cerebral cortex of primates, but how these areas process heterospecific vocalizations remains unclear. Using fMRI-guided electrophysiology, we recorded the spiking activity of individual neurons in the anterior temporal voice patches of two macaques while they listened to complex sounds including vocalizations from several species. In addition to cells selective for conspecific macaque vocalizations, we identified an unsuspected subpopulation of neurons with strong selectivity for human voice, not merely explained by spectral or temporal structure of the sounds. The auditory representational geometry implemented by these neurons was strongly related to that measured in the human voice areas with neuroimaging and only weakly to low-level acoustical structure. These findings provide new insights into the neural mechanisms involved in auditory expertise and the evolution of communication systems in primates.


Asunto(s)
Percepción Auditiva , Imagen por Resonancia Magnética , Neuronas , Vocalización Animal , Voz , Animales , Humanos , Neuronas/fisiología , Voz/fisiología , Imagen por Resonancia Magnética/métodos , Vocalización Animal/fisiología , Percepción Auditiva/fisiología , Masculino , Macaca mulatta , Encéfalo/fisiología , Estimulación Acústica , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA