Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Res ; 934(2): 132-9, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-11955476

RESUMEN

During and after spaceflight astronauts experience neurophysiological alterations. To investigate if the impairment observed might be traced back to cytomorphology, we undertook a ground based research using a random positioning machine (clinostat) as a simulation method for microgravity. The outcome of the study was represented by cytoskeletal changes occurring in cultured glial cells (C(6) line) after 15 min, 30 min, 1 h, 20 h and 32 h under simulated microgravity. Glia is fundamental for brain function and it is essential for the normal health of the entire nervous system. Our data showed that after 30 min under simulated microgravity the cytoskeleton was damaged: microfilaments (F-actin) and intermediate filaments (Vimentin, Glial Fibrillary Acidic Proteins GFAP) were highly disorganised, microtubules (alpha-tubulin) lost their radial array, the overall cellular shape was deteriorated, and the nuclei showed altered chromatin condensations and DNA fragmentation. This feature got less dramatic after 20 h of simulated microgravity when glial cells appeared to reorganise their cytoskeleton and mitotic figures were present. The research was carried out by immunohistochemistry using antibodies to alpha-tubulin, vimentin and GFAP, and cytochemical labelling of F-actin (Phalloidin-TRIC). The nuclei were stained with propidium iodide or 4,6-diamidino-2-phenylindole dihydrochloride (DAPI). The cells were observed at the conventional and/or the confocal laser scanning microscope. Samples were also observed at the scanning electron microscope (SEM). Our data showed that in weightlessness alterations occur already visible at the scale of the single cell; if this may lead to the neurophysiological problems observed in flight is yet to be established.


Asunto(s)
Sistema Nervioso Central/patología , Citoesqueleto/patología , Neuroglía/patología , Mareo por Movimiento Espacial/fisiopatología , Ingravidez/efectos adversos , Actinas/metabolismo , Actinas/ultraestructura , Animales , Apoptosis/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Núcleo Celular/ultraestructura , Tamaño de la Célula/fisiología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/ultraestructura , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Filamentos Intermedios/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Microtúbulos/patología , Microtúbulos/ultraestructura , Mitosis/fisiología , Neuroglía/metabolismo , Neuroglía/ultraestructura , Ratas , Rotación/efectos adversos , Mareo por Movimiento Espacial/patología , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura , Células Tumorales Cultivadas , Vimentina/metabolismo , Vimentina/ultraestructura , Simulación de Ingravidez
2.
J Vestib Res ; 6(6): 403-9, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8968968

RESUMEN

We examined the effect and aftereffect of acute or chronic load of hypergravity produced by an animal centrifuge, on pica (that is, kaolin intake) in the rat as an index of motion sickness. Although the degree of pica initially induced by acute or chronic hypergravity was not different, the rate of decline of increased kaolin intake over poststimulus days was different. Pica after a 1-h load of 2g decreased rapidly. On the other hand, pica lasted 3 days after a 48-h load of 2g. These findings suggest that the aftereffects of chronic hypergravity application on pica are due to motion sickness induced by readaptation to normal gravity, and they support our idea that after adaptation to a hypergravity environment, return and readaptation to the normal gravity can simulate exposure and adaptation to microgravity. We concluded that motion sickness in rats induced by the aftereffects of chronic hypergravity stimulation can be used as a ground-based animal model of space adaptation syndrome.


Asunto(s)
Hipergravedad/efectos adversos , Mareo por Movimiento Espacial/etiología , Animales , Centrifugación , Modelos Animales de Enfermedad , Caolín/administración & dosificación , Masculino , Ratas , Ratas Wistar , Mareo por Movimiento Espacial/patología
3.
Adv Space Res ; 22(2): 185-96, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-11541396

RESUMEN

The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).


Asunto(s)
Encéfalo/diagnóstico por imagen , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/efectos de la radiación , Vuelo Espacial , Ingravidez/efectos adversos , Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Animales , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Humanos , Imagen por Resonancia Magnética , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de la radiación , Mareo por Movimiento Espacial/patología , Tomografía Computarizada de Emisión , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA