Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Br J Cancer ; 131(4): 763-777, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942989

RESUMEN

BACKGROUND: Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS: We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS: Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS: RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.


Asunto(s)
Apoptosis , Sinergismo Farmacológico , Meduloblastoma , Neuroblastoma , Tretinoina , Pez Cebra , Humanos , Animales , Tretinoina/farmacología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Meduloblastoma/metabolismo , Meduloblastoma/genética , Apoptosis/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/genética , Línea Celular Tumoral , Compuestos de Anilina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Sulfonamidas/farmacología , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratones , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína Proto-Oncogénica N-Myc
2.
Oncologist ; 29(5): 377-383, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38438322

RESUMEN

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Asunto(s)
Anilidas , ADN Tumoral Circulante , Meduloblastoma , Mutación , Receptor Patched-1 , Piridinas , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/sangre , Meduloblastoma/patología , Piridinas/uso terapéutico , Receptor Patched-1/genética , Adulto , Anilidas/uso terapéutico , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/sangre , Masculino , Femenino
3.
J Neurooncol ; 166(1): 99-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38184819

RESUMEN

PURPOSE: Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS: A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS: 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION: Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.


Asunto(s)
Benzamidas , Neoplasias Cerebelosas , Meduloblastoma , Piridinas , Humanos , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Combinación de Medicamentos , Interacciones Farmacológicas , Inhibidores de Histona Desacetilasas/farmacología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , ARN Interferente Pequeño
4.
J Neurooncol ; 168(1): 139-149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38662151

RESUMEN

PURPOSE: Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS: We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS: PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS: PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Inhibidores de las Quinasa Fosfoinosítidos-3 , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612726

RESUMEN

Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFß-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Histona Demetilasas/genética , Epigénesis Genética , Microambiente Tumoral
6.
SLAS Discov ; 29(2): 100147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355016

RESUMEN

Pediatric brain tumors (PBTs) represent about 25 % of all pediatric cancers and are the most common solid tumors in children and adolescents. Medulloblastoma (MB) is the most frequently occurring malignant PBT, accounting for almost 10 % of all pediatric cancer deaths. MB Group 3 (MB G3) accounts for 25-30 % of all MB cases and has the worst outcome, particularly when associated with MYC amplification. However, no targeted treatments for this group have been developed so far. Here we describe a unique high throughput screening (HTS) platform specifically designed to identify new therapies for MB G3. The platform incorporates optimized and validated 2D and 3D efficacy and toxicity models, that account for tumor heterogenicity, limited efficacy and unacceptable toxicity from the very early stage of drug discovery. The platform has been validated by conducting a pilot HTS campaign with a 1280 lead-like compound library. Results showed 8 active compounds, targeting MB reported targets and several are currently approved or in clinical trials for pediatric patients with PBTs, including MB. Moreover, hits were combined to avoid tumor resistance, identifying 3 synergistic pairs, one of which is currently under clinical study for recurrent MB and other PBTs.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Adolescente , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/patología , Ensayos Analíticos de Alto Rendimiento , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología
7.
Cancer Res ; 84(6): 872-886, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486486

RESUMEN

Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE: Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.


Asunto(s)
Benzbromarona/análogos & derivados , Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Ratones , Humanos , Niño , Proteínas Hedgehog , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Neoplasias Cerebelosas/tratamiento farmacológico
8.
J Exp Clin Cancer Res ; 43(1): 18, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200580

RESUMEN

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS: In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS: MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION: These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Sirolimus/análogos & derivados , Humanos , Animales , Ratones , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Serina-Treonina Quinasas TOR
9.
Curr Pharm Des ; 30(1): 31-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151840

RESUMEN

BACKGROUND: Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY: This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS: This study indicates that several signaling pathways, such as sonic hedgehog, WNT/ß-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-ß and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION: This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Recurrencia Local de Neoplasia , Transducción de Señal , Neoplasias Encefálicas/genética , Epigénesis Genética/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología
10.
CNS Oncol ; 13(1): CNS107, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38456492

RESUMEN

Aim: Adult medulloblastomas (MB) are rare, and optimal post-craniospinal irradiation (CSI) chemotherapy is not yet defined. We investigated hematological toxicity in patients treated with platinum-etoposide (EP) post-CSI. Methods: Retrospective, single-institution study to determine hematological toxicity in adult MB patients treated with EP (1995-2022). Results: Thirteen patients with a median follow-up of 50 months (range, 10-233) were analyzed. Four discontinued treatment due to toxicity, one after 1, 3 after 3 cycles. Hematological toxicities included grade 3 (5 patients) and grade 4 (6 patients). Two patients experienced post-treatment progression and died 16 and 37 months from diagnosis. Conclusion: Post-CSI EP demonstrates acceptable hematological toxicity in adult MB. However, the small cohort precludes definitive survival outcome conclusions. Prospective studies for comprehensive comparisons with other regimens are needed in this context.


Our study aimed to understand the effect of a chemotherapy combination (platinum and etoposide) on blood counts in adult patients with medulloblastoma after craniospinal radiation. Medulloblastoma is a rare brain cancer in adults. We analyzed data from 13 adult patients with medulloblastoma. The results show that the treatment leads to significant blood count-related side effects. Four of the patients discontinued their treatment early. Blood counts improved again after completion of treatment. Two patients had the tumor grow back after treatment and died later. Overall, the effect from this chemotherapy combination on blood counts was felt to be acceptable. The number of patients in this study was small, and more research is needed to determine the overall effectiveness of this treatment.


Asunto(s)
Neoplasias Cerebelosas , Etopósido , Meduloblastoma , Humanos , Masculino , Estudios Retrospectivos , Adulto , Femenino , Meduloblastoma/radioterapia , Meduloblastoma/tratamiento farmacológico , Etopósido/efectos adversos , Etopósido/administración & dosificación , Adulto Joven , Persona de Mediana Edad , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/terapia , Enfermedades Hematológicas/inducido químicamente , Enfermedades Hematológicas/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estudios de Seguimiento , Adolescente , Irradiación Craneoespinal/efectos adversos , Platino (Metal)/uso terapéutico
11.
Int J Radiat Oncol Biol Phys ; 119(2): 494-506, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323945

RESUMEN

PURPOSE: Radiation myelitis (RM) is a rare complication of radiation therapy (RT). The Pediatric Normal Tissue Effects in the Clinic spinal cord task force aimed to identify RT dose effects and assess risk factors for RM in children. Through systematic review, we analyzed RT dose, fraction size, latency between completion of RT and toxicity, chemotherapy use, age when irradiated, and sex. METHODS AND MATERIALS: We conducted literature searches of peer-reviewed manuscripts published from 1964 to June 2017 evaluating RM among children. Normality of variables was assessed with Kolmogorov-Smirnov or Shapiro-Wilk tests. Spearman's rank correlation coefficients were used to test correlations between RT dose/fraction size and latency between RT and development of toxicity. RESULTS: Of 1329 identified and screened reports, 144 reports were fully reviewed and determined to have adequate data for analysis; 16 of these reports had a total of 33 cases of RM with a median age of 13 years (range, 0.2-18) at the time of RT. The most common primary tumor histologies were rhabdomyosarcoma (n = 9), medulloblastoma (n = 5), and Hodgkin lymphoma (n = 2); the most common chemotherapy agents given were vincristine (n = 15), intrathecal methotrexate (n = 12), and intrathecal cytarabine (n = 10). The median RT dose and fraction size were 40 Gy (range, 24-57.4 Gy) and 1.8 Gy (range, 1.3-2.6 Gy), respectively. RT dose resulting in RM in patients who also received chemotherapy was lower than in those not receiving chemotherapy (mean 39.6 vs 49.7 Gy; P = .04). There was no association of age with RT dose. The median latency period was 7 months (range, 1-29). Higher RT dose was correlated with longer latency periods (P = .03) to RM whereas sex, age, fraction size, and chemotherapy use were not. Two of 17 patients with adequate follow-up recovered from RM; unfortunately, it was fatal in 6 of 15 evaluable patients. Complication probability modeling was not possible because of the rarity of events. CONCLUSIONS: This report demonstrates a relatively short latency from RT (with or without chemotherapy) to RM and a wide range of doses (including fraction sizes) associated with RM. No apparent association with age at the time of RT could be discerned. Chemotherapy appears to reduce spinal cord tolerance. Recovery from RM is rare, and it is often fatal.


Asunto(s)
Traumatismos por Radiación , Humanos , Niño , Adolescente , Preescolar , Masculino , Lactante , Femenino , Neoplasias/radioterapia , Dosificación Radioterapéutica , Mielitis/etiología , Meduloblastoma/radioterapia , Meduloblastoma/tratamiento farmacológico , Factores de Riesgo , Rabdomiosarcoma/radioterapia , Rabdomiosarcoma/tratamiento farmacológico , Enfermedad de Hodgkin/radioterapia , Enfermedad de Hodgkin/tratamiento farmacológico , Factores de Edad , Enfermedades de la Médula Espinal/etiología
12.
Pharmacol Ther ; 260: 108673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857789

RESUMEN

Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Recurrencia Local de Neoplasia , Humanos , Meduloblastoma/patología , Meduloblastoma/genética , Meduloblastoma/terapia , Meduloblastoma/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Animales , Niño , Antineoplásicos/uso terapéutico , Medicina de Precisión
13.
Cell Rep Med ; 5(6): 101568, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38754419

RESUMEN

Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Análisis de la Célula Individual/métodos , Meduloblastoma/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , RNA-Seq/métodos , Animales , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/tratamiento farmacológico , Análisis de Expresión Génica de una Sola Célula
14.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664416

RESUMEN

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Asunto(s)
Proteína p300 Asociada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Línea Celular Tumoral , Redes Reguladoras de Genes/efectos de los fármacos , Animales , Dominios Proteicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Antineoplásicos/farmacología
15.
Cell Chem Biol ; 31(7): 1264-1276.e7, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38442710

RESUMEN

The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.


Asunto(s)
Proliferación Celular , Proteínas Hedgehog , Meduloblastoma , Transducción de Señal , Receptor Smoothened , Esteroles , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Transducción de Señal/efectos de los fármacos , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Esteroles/química , Esteroles/farmacología , Esteroles/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Colesterol/metabolismo
16.
J Clin Invest ; 134(15)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885332

RESUMEN

Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings. Despite its efficacy and tolerable toxicity, this compound has not been evaluated in MB. Utilizing a bioinformatic data set that integrates cellular drug response data with gene expression, we predicted that Group 3 (G3) MB, which has a poor 5-year survival, would be sensitive to triptolide/Minnelide. We subsequently showed that both triptolide and Minnelide attenuate the viability of G3 MB cells ex vivo. Transcriptomic analyses identified MYC signaling, a pathologically relevant driver of G3 MB, as a downstream target of this class of drugs. We validated this MYC dependency in G3 MB cells and showed that triptolide exerts its efficacy by reducing both MYC transcription and MYC protein stability. Importantly, Minnelide acted on MYC to reduce tumor growth and leptomeningeal spread, which resulted in improved survival of G3 MB animal models. Moreover, Minnelide improved the efficacy of adjuvant chemotherapy, further highlighting its potential for the treatment of MYC-driven G3 MB.


Asunto(s)
Diterpenos , Compuestos Epoxi , Meduloblastoma , Fenantrenos , Proteínas Proto-Oncogénicas c-myc , Ensayos Antitumor por Modelo de Xenoinjerto , Fenantrenos/farmacología , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Profármacos/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Organofosfatos
18.
Clin. transl. oncol. (Print) ; 24(5): 919-926, mayo 2022.
Artículo en Inglés | IBECS (España) | ID: ibc-203794

RESUMEN

PurposeBRCA2 defect exists in glioma and regulates drug resistance of glioma to chemotherapy. However, its role in medulloblastoma and the mechanism is not known. To investigate the effects of BRCA2 deficiency combined with Olaparib in medulloblastoma and the mechanism.MethodsBRCA2 was knocked down by RNAi technology and cell proliferation was detected by CCK-8 assay. Cell apoptosis was determined by FACS analysis when the in vivo role of BRCA2 was explored with xenograft mice model. Western blotting technology was used to explore the mechanism of BRCA2.ResultsKnockdown of BRCA2 enhanced the inhibitory effect of Olaparib on proliferation of Daoy and LN229 cells. The inhibition rate of Olaparib on Daoy or LN229 cells was 61.1%, 66.03% in shBRCA2 group, while it was 42.9%, 41.1% in shNC group. Overexpression of RAD51 partially reversed the effect of shBRCA2. In Daoy cells, apoptotic rate was 26.9% in Olaparib group and 58.9% in Olaparib/shBRCA2 group. However, it was 33.4% after RAD51 was overexpressed. It was the same in LN229 cells. In xenograft mice model, tumor volume in Olaparib and Olaparib/shBRCA2 group was 376.12 and 84.95mm3 when tumor weight was 0.46 g and 0.12 g. In addition, the level of RAD51, RAD50, MRE11, and NBS was increased by Olaparib alone but decreased reversely after knockdown of BRCA2 in Daoy cells.ConclusionsKnockdown of BRCA2 increases the sensitivity of medulloblastoma cells to Olaparib and strengthens the efficacy of Olaparib in vitro and in vivo. Knockdown of BRCA2 causes DNA damage repair by regulating RAD51-mediated signaling pathway in Daoy cells.


Asunto(s)
Humanos , Proteína BRCA2/genética , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Glioma , Ftalazinas , Piperazinas , Recombinasa Rad51/metabolismo , ADN , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Recombinasa Rad51/genética
20.
Clin. transl. oncol. (Print) ; 25(3): 696-705, mar. 2023.
Artículo en Inglés | IBECS (España) | ID: ibc-216428

RESUMEN

Background Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. Methods PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. Results and Discussion PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. Conclusions CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155 (AU)


Asunto(s)
Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Poliovirus , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA