Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(3): 1147-1204, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329422

RESUMEN

The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.


Asunto(s)
Homeostasis , Humanos , Animales , Homeostasis/fisiología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Sodio/metabolismo , Riñón/metabolismo
2.
Physiol Rev ; 100(1): 321-356, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793845

RESUMEN

Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC's role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.


Asunto(s)
Riñón/metabolismo , Potasio/metabolismo , Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Homeostasis , Humanos , Hipertensión , Riñón/fisiología , Natriuresis , Insuficiencia Renal Crónica
3.
Am J Pathol ; 194(10): 1844-1856, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032602

RESUMEN

Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with those in WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.


Asunto(s)
Túbulos Renales Distales , Ratones Transgénicos , Análisis de Secuencia de ARN , Animales , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/patología , Ratones , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Nefropatía Asociada a SIDA/patología , Nefropatía Asociada a SIDA/genética , Nefropatía Asociada a SIDA/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
4.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557357

RESUMEN

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Hipertensión , Ratas Endogámicas SHR , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Intercambiador 3 de Sodio-Hidrógeno , Regulación hacia Arriba , Animales , Masculino , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Presión Sanguínea/efectos de los fármacos , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos
5.
J Physiol ; 602(5): 967-987, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38294810

RESUMEN

Aldosterone is responsible for maintaining volume and potassium homeostasis. Although high salt consumption should suppress aldosterone production, individuals with hyperaldosteronism lose this regulation, leading to a state of high aldosterone despite dietary sodium consumption. The present study examines the effects of elevated aldosterone, with or without high salt consumption, on the expression of key Na+ transporters and remodelling in the distal nephron. Epithelial sodium channel (ENaC) α-subunit expression was increased with aldosterone regardless of Na+ intake. However, ENaC ß- and γ-subunits unexpectedly increased at both a transcript and protein level with aldosterone when high salt was present. Expression of total and phosphorylated Na+ Cl- cotransporter (NCC) significantly increased with aldosterone, in association with decreased blood [K+ ], but the addition of high salt markedly attenuated the aldosterone-dependent NCC increase, despite equally severe hypokalaemia. We hypothesized this was a result of differences in distal convoluted tubule length when salt was given with aldosterone. Imaging and measurement of the entire pNCC-positive tubule revealed that aldosterone alone caused a shortening of this segment, although the tubule had a larger cross-sectional diameter. This was not true when salt was given with aldosterone because the combination was associated with a lengthening of the tubule in addition to increased diameter, suggesting that differences in the pNCC-positive area are not responsible for differences in NCC expression. Together, our results suggest the actions of aldosterone, and the subsequent changes related to hypokalaemia, are altered in the presence of high dietary Na+ . KEY POINTS: Aldosterone regulates volume and potassium homeostasis through effects on transporters in the kidney; its production can be dysregulated, preventing its suppression by high dietary sodium intake. Here, we examined how chronic high sodium consumption affects aldosterone's regulation of sodium transporters in the distal nephron. Our results suggest that high sodium consumption with aldosterone is associated with increased expression of all three epithelial sodium channel subunits, rather than just the alpha subunit. Aldosterone and its associated decrease in blood [K+ ] lead to an increased expression of Na-Cl cotransporter (NCC); the addition of high sodium consumption with aldosterone partially attenuates this NCC expression, despite similarly low blood [K+ ]. Upstream kinase regulators and tubule remodelling do not explain these results.


Asunto(s)
Hipopotasemia , Sodio en la Dieta , Humanos , Sodio en la Dieta/farmacología , Sodio en la Dieta/metabolismo , Sodio/metabolismo , Aldosterona/farmacología , Aldosterona/metabolismo , Canales Epiteliales de Sodio/metabolismo , Hipopotasemia/metabolismo , Túbulos Renales Distales/metabolismo , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Potasio/metabolismo
6.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881876

RESUMEN

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Animales , Ratones , Furosemida , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
7.
Am J Physiol Renal Physiol ; 326(2): F285-F299, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096266

RESUMEN

Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.


Asunto(s)
Arginina Vasopresina , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Células HEK293 , Arginina Vasopresina/metabolismo , Cotransportadores de K Cl , Desamino Arginina Vasopresina , Colforsina , Proteína Fosfatasa 1/metabolismo , Riñón/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
8.
Am J Physiol Renal Physiol ; 326(6): F971-F980, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634133

RESUMEN

The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.


Asunto(s)
Acuaporina 2 , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Acuaporina 2/metabolismo , Acuaporina 2/orina , Masculino , Femenino , Persona de Mediana Edad , Enfoques Dietéticos para Detener la Hipertensión , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Hipertensión/dietoterapia , Hipertensión/orina , Hipertensión/metabolismo , Hipertensión/fisiopatología , Adulto , Dieta Hiposódica , Presión Sanguínea , Proteómica/métodos , Riñón/metabolismo
9.
Am J Physiol Renal Physiol ; 327(3): F386-F396, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991009

RESUMEN

Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.


Asunto(s)
Síndrome de Bartter , Síndrome de Gitelman , Magnesio , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/genética , Síndrome de Gitelman/fisiopatología , Magnesio/metabolismo , Síndrome de Bartter/metabolismo , Síndrome de Bartter/genética , Animales , Femenino , Masculino , Calcio/metabolismo , Ratas , Nefronas/metabolismo , Simulación por Computador , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Factores Sexuales , Modelos Biológicos , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genética
10.
Am J Physiol Renal Physiol ; 327(3): F373-F385, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38961847

RESUMEN

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.


Asunto(s)
Túbulos Renales Distales , Proteínas Serina-Treonina Quinasas , Miembro 3 de la Familia de Transportadores de Soluto 12 , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Masculino , Ratones , Túbulos Renales Distales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Potasio/metabolismo , Potasio/sangre , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética
11.
Am J Physiol Renal Physiol ; 326(3): F460-F476, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38269409

RESUMEN

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .


Asunto(s)
Ratones Noqueados , Potasio en la Dieta , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Masculino , Ratones , Riñón/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Potasio/orina , Potasio/metabolismo , Potasio/sangre , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Eliminación Renal , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Femenino
12.
Am J Physiol Renal Physiol ; 327(2): F277-F289, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813592

RESUMEN

Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.


Asunto(s)
Presión Sanguínea , Hipertensión , Proteínas Serina-Treonina Quinasas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12 , Animales , Femenino , Masculino , Presión Sanguínea/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Factores Sexuales , Fosforilación , Riñón/metabolismo , Riñón/efectos de los fármacos , Transducción de Señal , Ratas , Modelos Animales de Enfermedad
13.
Am J Physiol Renal Physiol ; 327(3): F435-F449, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779754

RESUMEN

We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.


Asunto(s)
Canales Epiteliales de Sodio , Diana Mecanicista del Complejo 2 de la Rapamicina , Natriuresis , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12 , Animales , Canales Epiteliales de Sodio/metabolismo , Natriuresis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Masculino , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Riñón/metabolismo , Modelos Animales de Enfermedad , Ratas , Amilorida/farmacología , Amilorida/análogos & derivados , Presión Sanguínea/efectos de los fármacos , Fosforilación , Transducción de Señal/efectos de los fármacos , Indoles , Purinas
14.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779755

RESUMEN

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Asunto(s)
Diabetes Mellitus Experimental , Canales Epiteliales de Sodio , Potasio en la Dieta , Potasio , Animales , Diabetes Mellitus Experimental/metabolismo , Potasio/metabolismo , Potasio/orina , Masculino , Potasio en la Dieta/metabolismo , Canales Epiteliales de Sodio/metabolismo , Ratones Endogámicos C57BL , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/fisiopatología , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/fisiopatología , Hipopotasemia/metabolismo , Amilorida/farmacología , Eliminación Renal/efectos de los fármacos , Homeostasis , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Glucósidos/farmacología , Estreptozocina , Compuestos de Bencidrilo , Transportador 2 de Sodio-Glucosa
15.
Clin Exp Nephrol ; 28(8): 728-739, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38581621

RESUMEN

BACKGROUND: Hypertension is one of the major etiologies that cause chronic kidney disease (CKD) and can exacerbate kidney dysfunction. Zinc is an essential trace element playing a role in blood pressure regulation, and zinc deficiency, a common comorbidity in patients with CKD, can cause hypertension. However, the precise mechanism underlying zinc deficiency-induced hypertension is unknown. Sodium (Na+) retention due to inappropriate Na+ reabsorption in the renal tubule is the principal pathophysiology of hypertension. Therefore, this study aimed to investigate the association between zinc deficiency and salt sensitivity. METHODS: Adult mice were fed a zinc-adequate (ZnA) or zinc-deficient (ZnD) diet combined with/without high salt in drinking water (HS) for 4 weeks (n = 6 each). Changes in blood pressure, urinary sodium excretion, and the expressions of the proximal tubular Na+ transporter, Na+/H+ exchanger 3 (NHE3), which mostly contributes to filtered Na+ reabsorption and the downstream Na+-Cl- transporter (NCC) were analyzed. RESULTS: Urinary Na+ excretion significantly increased in ZnD mice, indicating that zinc deficiency causes natriuresis. NHE3 expressions were significantly suppressed, whereas NCC was upregulated in ZnD mice. Interestingly, the combination of high salt and ZnD diet (HS-ZnD) reversed the urinary Na+ loss. The NCC remained activated and NHE3 expressions paradoxically increased in HS-ZnD mice compared with those fed the combination of high salt and ZnA diet. In addition, blood pressure significantly increased only in HS-ZnD mice. CONCLUSION: The combination of zinc deficiency and high salt causes hypertension. Zinc is associated with salt-sensitivity, potentially through NHE3 and NCC regulation.


Asunto(s)
Presión Sanguínea , Hipertensión , Cloruro de Sodio Dietético , Intercambiador 3 de Sodio-Hidrógeno , Zinc , Animales , Zinc/deficiencia , Zinc/metabolismo , Hipertensión/etiología , Hipertensión/fisiopatología , Hipertensión/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Sodio/orina , Sodio/metabolismo , Natriuresis
16.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288902

RESUMEN

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Asunto(s)
Glucosuria , Simportadores del Cloruro de Sodio , Humanos , Ratones , Animales , Simportadores del Cloruro de Sodio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Glucosa/metabolismo , Células HEK293 , Ratones Endogámicos C57BL , Fosforilación , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Glucosuria/metabolismo
17.
Am J Physiol Renal Physiol ; 325(4): F479-F490, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560773

RESUMEN

The primary structure of the thiazide-sensitive NaCl cotransporter (NCC) was resolved 30 years ago by the molecular identification of the cDNA encoding this cotransporter, from the winter's flounder urinary bladder, following a functional expression strategy. This review outlines some aspects of how the knowledge about thiazide diuretics and NCC evolved, the history of the cloning process, and the expansion of the SLC12 family of electroneutral cotransporters. The diseases associated with activation or inactivation of NCC are discussed, as well as the molecular model by which the activity of NCC is regulated. The controversies in the field are discussed as well as recent publication of the three-dimensional model of NCC obtained by cryo-electron microscopy, revealing not only the amino acid residues critical for Na+ and Cl- translocation but also the residues critical for polythiazide binding to the transporter, opening the possibility for a new era in thiazide diuretic therapy.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Cloruro de Sodio , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio/metabolismo , Microscopía por Crioelectrón , Inhibidores de los Simportadores del Cloruro de Sodio , Clonación Molecular
18.
Lab Invest ; 103(3): 100022, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925204

RESUMEN

Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.


Asunto(s)
Melanoma , MicroARNs , Neoplasias de la Úvea , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Regulación hacia Arriba , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo
19.
Curr Opin Nephrol Hypertens ; 32(5): 476-481, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530087

RESUMEN

PURPOSE OF REVIEW: An increasing amount of evidence points out to a role for the thiazide-sensitive Na+:Cl- cotransporter, NCC, in the blood pressure alterations observed in conditions of pathologically high or pathologically low aldosterone. Here, we briefly review this evidence that is changing our perception of the pathophysiology of primary aldosteronism. RECENT FINDINGS: Although initially NCC was thought to be a direct target of aldosterone, more recent evidence suggests that NCC is only indirectly regulated by aldosterone, at least in a chronic setting. Aldosterone-induced changes in plasma K+ concentration that are prompted by the modulation of K+ secretion in principal cells of the connecting tubule and collecting duct are actually responsible for the modulation of NCC in conditions of altered aldosterone levels. A mounting amount of evidence suggests that this indirect effect of aldosterone on NCC may be key to produce the blood pressure alterations observed in aldosterone excess or aldosterone deficit. Finally, recent insights into the molecular pathways involved in NCC modulation by K+ are briefly reviewed. SUMMARY: The evidence reviewed here suggests that correction of K+ alterations in patients with hyper or hypoaldosteronism may substantially affect blood pressure levels. Mechanistically, this may be related to the K+-mediated modulation of NCC.


Asunto(s)
Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona/metabolismo , Fosforilación , Hipertensión/etiología , Hipertensión/metabolismo , Presión Sanguínea , Hiperaldosteronismo/complicaciones , Hiperaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Túbulos Renales Distales/metabolismo
20.
Curr Opin Nephrol Hypertens ; 32(5): 451-457, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530086

RESUMEN

PURPOSE OF REVIEW: Regulation of the sodium chloride cotransporter (NCC) in the distal convoluted tubule (DCT) plays a crucial role in renal salt handling. The calcium-sensing receptor (CaSR) has been shown to activate NCC through the WNK4-SPAK pathway, which is independent of the Renin-Angiotensin-Aldosterone system. In this review, we examine new information about the mechanism of how the CaSR regulates NCC through the WNK4-SPAK pathway and its physiological and therapeutic implications. RECENT FINDINGS: The activation of CaSR in TALH cells during hypercalcemia inhibits NKCC2 and ROMK activity, reducing paracellular Ca2+ reabsorption but decreasing salt reabsorption. This pathway enables NaCl reabsorption in the DCT while promoting Ca2+ excretion. CaSR activation in the apical DCT stimulates a signaling pathway involving PKC, WNK4, and SPAK, which increases NCC activation to recover the NaCl not reabsorbed in TAHL. Glucose or fructose acting as calcimimetics enhance apical CaSR sensitivity, increasing NCC activity, which contribute to the mechanism of hypertension prevalence in diabetic patients or in those with high fructose consumption. SUMMARY: These findings reveal the importance of the CaSR-mediated activation of the WNK4-SPAK pathway in regulating salt and calcium homeostasis and its potential as a therapeutic target for hypertension and related diseases.


Asunto(s)
Hipertensión , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Fosforilación , Cloruro de Sodio/metabolismo , Calcio/metabolismo , Túbulos Renales Distales/metabolismo , Hipertensión/metabolismo , Cloruro de Sodio Dietético/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA